首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let \({\mathbb{K}}\) be a field and \({S=\mathbb{K}[x_1,\dots,x_n]}\) be the polynomial ring in n variables over \({\mathbb{K}}\). Let G be a graph with n vertices. Assume that \({I=I(G)}\) is the edge ideal of G and \({J=J(G)}\) is its cover ideal. We prove that \({{\rm sdepth}(J)\geq n-\nu_{o}(G)}\) and \({{\rm sdepth}(S/J)\geq n-\nu_{o}(G)-1}\), where \({\nu_{o}(G)}\) is the ordered matching number of G. We also prove the inequalities \({{\rmsdepth}(J^k)\geq {\rm depth}(J^k)}\) and \({{\rm sdepth}(S/J^k)\geq {\rmdepth}(S/J^k)}\), for every integer \({k\gg 0}\), when G is a bipartite graph. Moreover, we provide an elementary proof for the known inequality reg\({(S/I)\leq \nu_{o}(G)}\).  相似文献   

2.
Consider the polynomial \({f(x, y) = xy^k + C}\) for \({k \geq 2}\) and any nonzero integer constant C. We derive an asymptotic formula for the k-free values of \({f(x, y)}\) when \({x, y \leq H}\). We also prove a similar result for the k-free values of \({f(p, q)}\) when \({p, q \leq H}\) are primes, thus extending Erd?s’ conjecture for our specific polynomial. The strongest tool we use is a recent generalization of the determinant method due to Reuss.  相似文献   

3.
Let us deliberate the question of computing a solution to the problems that can be articulated as the simultaneous equations \({Sx = x}\) and \({Tx = x}\) in the framework of metric spaces. However, when the mappings in context are not necessarily self-mappings, then it may be consequential that the equations do not have a common solution. At this juncture, one contemplates to compute a common approximate solution of such a system with the least possible error. Indeed, for a common approximate solution \({x^*}\) of the equations, the real numbers \({d(x^*, Sx^*)}\) and \({d(x^*,Tx^*)}\) measure the errors due to approximation. Eventually, it is imperative that one pulls off the global minimization of the multiobjective functions \({x \rightarrow d(x, Sx)}\) and \({x \rightarrow d(x, Tx)}\). When S and T are mappings from A to B, it follows that \({d(x, Sx) \geq d(A, B)}\) and \({d(x, Tx) \geq d(A, B)}\) for every \({x \in A}\). As a result, the global minimum of the aforesaid problem shall be actualized if it is ascertained that the functions \({x \rightarrow d(x, Sx)}\) and \({x \rightarrow d(x, Tx)}\) attain the lowest possible value d(A, B). The target of this paper is to resolve the preceding multiobjective global minimization problem when S is a T-cyclic contraction or a generalized cyclic contraction, thereby enabling one to determine a common optimal approximate solution to the aforesaid simultaneous equations.  相似文献   

4.
Let \({\Delta = BAG(2, q)}\) denote the classical biaffine plane of order q, that is, the symmetric \({((q^2 - 1)_q)}\) configuration obtained from the classical affine plane \({\Sigma = AG(2, q)}\) of order q by omitting a point of \({\Sigma}\) together with all lines through this point. Now let \({q \geq 4}\) be a power of a prime p and assume that \({\Delta}\) admits an embedding into the projective plane \({\Pi = PG(2, F)}\), where F is a (not necessarily commutative) field. Then this embedding extends to a projective subplane \({\Pi_0 \cong PG(2, q)}\) of \({\Pi}\); in particular, F has characteristic p. Consequently, \({BAG(2, q)}\) with \({q\geq 4}\) admits an embedding into \({PG(2, q')}\) if only if q′ is a power of q. This strengthens a result of Rigby (Canad J Math 17:977–1009, 1965) in a special case while simultaneously providing a more elegant proof.  相似文献   

5.
In this paper we consider the Schrödinger operator ?Δ + V on \({\mathbb R^d}\), where the nonnegative potential V belongs to the reverse Hölder class \({B_{q_{_1}}}\) for some \({q_{_1}\geq \frac{d}{2}}\) with d ≥ 3. Let \({H^1_L(\mathbb R^d)}\) denote the Hardy space related to the Schrödinger operator L = ?Δ + V and \({BMO_L(\mathbb R^d)}\) be the dual space of \({H^1_L(\mathbb R^d)}\). We show that the Schrödinger type operator \({\nabla(-\Delta +V)^{-\beta}}\) is bounded from \({H^1_L(\mathbb R^d)}\) into \({L^p(\mathbb R^d)}\) for \({p=\frac{d}{d-(2\beta-1)}}\) with \({ \frac{1}{2}<\beta<\frac{3}{2} }\) and that it is also bounded from \({L^p(\mathbb R^d)}\) into \({BMO_L(\mathbb R^d)}\) for \({p=\frac{d}{2\beta-1}}\) with \({ \frac{1}{2}<\beta< 2}\).  相似文献   

6.
We call the \({\delta}\)-vector of an integral convex polytope of dimension d flat if the \({\delta}\)-vector is of the form \({(1,0,\ldots,0,a,\ldots,a,0,\ldots,0)}\), where \({a \geq 1}\). In this paper, we give the complete characterization of possible flat \({\delta}\)-vectors. Moreover, for an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^N}\) of dimension d, we let \({i(\mathcal{P},n)=|n\mathcal{P}\cap \mathbb{Z}^N|}\) and \({i^*(\mathcal{P},n)=|n(\mathcal{P} {\setminus}\partial \mathcal{P})\cap \mathbb{Z}^N|}\). By this characterization, we show that for any \({d \geq 1}\) and for any \({k,\ell \geq 0}\) with \({k+\ell \leq d-1}\), there exist integral convex polytopes \({\mathcal{P}}\) and \({\mathcal{Q}}\) of dimension d such that (i) For \({t=1,\ldots,k}\), we have \({i(\mathcal{P},t)=i(\mathcal{Q},t),}\) (ii) For \({t=1,\ldots,\ell}\), we have \({i^*(\mathcal{P},t)=i^*(\mathcal{Q},t)}\), and (iii) \({i(\mathcal{P},k+1) \neq i(\mathcal{Q},k+1)}\) and \({i^*(\mathcal{P},\ell+1)\neq i^*(\mathcal{Q},\ell+1)}\).  相似文献   

7.
Let F be a non-Archimedean local field of characteristic 0, let G be the group of F-rational points of a connected reductive group defined over F and let \({G\prime}\) be the group of F-rational points of its quasi-split inner form. Given standard modules \({I(\tau, \nu )}\) and \({I(\tau\prime, \nu\prime)}\) for G and \({G\prime}\) respectively with \({\tau\prime}\) a generic tempered representation, such that the Harish-Chandra \({\mu}\)-function of a representation in the supercuspidal support of \({\tau}\) agrees with the one of a generic essentially square-integral representation in some Jacquet module of \({\tau\prime}\) (after a suitable identification of the underlying spaces under which \({\nu = \nu\prime}\)), we show that \({I(\tau, \nu)}\) is irreducible whenever \({I(\tau\prime, \nu\prime)}\) is. The conditions are satisfied if the Langlands quotients \({J(\tau, \nu})\) and \({J(\tau\prime, \nu\prime)}\) of respectively \({I(\tau, \nu)}\) and \({I(\tau\prime, \nu\prime)}\) lie in the same Vogan L-packet (whenever this Vogan L-packet is defined), proving that, for any Vogan L-packet, all the standard modules with Langlands quotient in a given Vogan L-packet are irreducible, if and only if this Vogan L-packet contains a generic representation. This result for generic Vogan L-packets was proven for quasi-split orthogonal and symplectic groups by Moeglin-Waldspurger and used in their proof of the general case of the local Gan-Gross-Prasad conjectures for these groups.  相似文献   

8.
We show that the largest possible diameter \({\delta(d,k)}\) of a d-dimensional polytope whose vertices have integer coordinates ranging between 0 and k is at most \({kd - \lceil2d/3\rceil-(k-3)}\) when \({k\geq3}\) . In addition, we show that \({\delta(4,3)=8}\) . This substantiates the conjecture whereby \({\delta(d,k)}\) is at most \({\lfloor(k+1)d/2\rfloor}\) and is achieved by a Minkowski sum of lattice vectors.  相似文献   

9.
Let \({\Omega}\) be a Lipschitz bounded domain of \({\mathbb{R}^N}\), \({N\geq2}\), and let \({u_p\in W_0^{1,p}(\Omega)}\) denote the p-torsion function of \({\Omega}\), p > 1. It is observed that the value 1 for the Cheeger constant \({h(\Omega)}\) is threshold with respect to the asymptotic behavior of up, as \({p\rightarrow 1^+}\), in the following sense: when \({h(\Omega) > 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_{p}\right\| _{L^\infty(\Omega)}=0}\), and when \({h(\Omega) < 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega)}=\infty}\). In the case \({h(\Omega)=1}\), it is proved that \({\limsup_{p\rightarrow1^+}\left\|u_p\right\|_{L^\infty(\Omega)}<\infty}\). For a radial annulus \({\Omega_{a,b}}\), with inner radius a and outer radius b, it is proved that \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega_{a,b})}=0}\) when \({h(\Omega_{a,b})=1}\).  相似文献   

10.
Let \({L(n)}\) be the language of group theory with n additional new constant symbols \({c_1,\ldots,c_n}\). In \({L(n)}\) we consider the class \({{\mathbb{K}}(n)}\) of all finite groups G of exponent \({p > 2}\), where \({G'\subseteq\langle c_1^G,\ldots,c_n^G\rangle \subseteq Z(G)}\) and \({c_1^G,\ldots,c_n^G}\) are linearly independent. Using amalgamation we show the existence of Fraïssé limits \({D(n)}\) of \({{\mathbb{K}}(n)}\). \({D(1)}\) is Felgner’s extra special p-group. The elementary theories of the \({D(n)}\) are supersimple of SU-rank 1. They have the independence property.  相似文献   

11.
For any prime p and positive integers c, d there is up to isomorphism a unique p-group \({G_{d}^{c}(p)}\) of least order having any (finite) p-group G with rank \({d(G) \le d}\) and Frattini class \({c_{p}(G) \le c}\) as epimorphic image. Here \({c_{p}(G) = n}\) is the least positive integer such that G has a central series of length n with all factors being elementary. This “disposition” p-group \({G_{d}^{c}(p)}\) has been examined quite intensively in the literature, sometimes controversially. The objective of this paper is to present a summary of the known facts, and to add some new results. For instance we show that for \({G = G_{d}^{c}(p)}\) the centralizer \({C_{G}(x) = \langle Z(G), x \rangle}\) whenever \({x \in G}\) is outside the Frattini subgroup, and that for odd p and \({d \ge 2}\) the group \({E = G_{d}^{c+1}(p)/(G_{d}^{c+1}(p))^{p^{c}}}\) is a distinguished Schur cover of G with \({E/Z(E) \cong G}\). We also have a fibre product construction of \({G_{d}^{c+1}(p)}\) in terms of \({G = G_{d}^{c}(p)}\) which might be of interest for Galois theory.  相似文献   

12.
Let \({\mathcal{M}}\) be a semifinite von Neumann algebra with a faithful, normal, semifinite trace \({\tau}\) and E be a strongly symmetric Banach function space on \({[0,\tau({\bf 1}))}\) . We show that an operator x in the unit sphere of \({E(\mathcal{M}, \tau)}\) is k-extreme, \({k \in {\mathbb{N}}}\) , whenever its singular value function \({\mu(x)}\) is k-extreme and one of the following conditions hold (i) \({\mu(\infty, x) = \lim_{t\to\infty}\mu(t, x) = 0}\) or (ii) \({n(x)\mathcal{M}n(x^*) = 0}\) and \({|x| \geq \mu(\infty, x)s(x)}\) , where n(x) and s(x) are null and support projections of x, respectively. The converse is true whenever \({\mathcal{M}}\) is non-atomic. The global k-rotundity property follows, that is if \({\mathcal{M}}\) is non-atomic then E is k-rotund if and only if \(E(\mathcal{M}, \tau)\) is k-rotund. As a consequence of the noncommutative results we obtain that f is a k-extreme point of the unit ball of the strongly symmetric function space E if and only if its decreasing rearrangement \({\mu(f)}\) is k-extreme and \({|f| \geq \mu(\infty,f)}\) . We conclude with the corollary on orbits Ω(g) and Ω′(g). We get that f is a k-extreme point of the orbit \({\Omega(g),\,g \in L_1 + L_{\infty}}\) , or \({\Omega'(g),\,g \in L_1[0, \alpha),\,\alpha < \infty}\) , if and only if \({\mu(f) = \mu(g)}\) and \({|f| \geq \mu(\infty, f)}\) . From this we obtain a characterization of k-extreme points in Marcinkiewicz spaces.  相似文献   

13.
Let \({\mathcal{B}^\omega(p, q, B_d)}\) denote the \({\omega}\)-weighted Hardy–Bloch space on the unit ball B d of \({\mathbb{C}^d}\), \({d\ge 1}\). For \({2< p,q < \infty}\) and \({f\in \mathcal{B}^\omega(p, q, B_d)}\), we obtain sharp estimates on the growth of the p-integral means M p (f, r) as \({r\to 1-}\).  相似文献   

14.
Let G be a group. We denote by \({\nu(G)}\) an extension of the non-abelian tensor square \({G \otimes G}\) by \({G \times G}\). We prove that if G is finite-by-nilpotent, then the non-abelian tensor square \({G \otimes G}\) is finite-by-nilpotent. Moreover, \({\nu(G)}\) is nilpotent-by-finite (Theorem A). Also we characterize BFC-groups in terms of \({\nu(G)}\) among the groups G in which the derived subgroup is finitely generated (Theorem B).  相似文献   

15.
We prove the following: (1) For every \({n \geq 2}\), there are infinitely many, mutually non-similar n-dimensional simplices in \({\mathbb{R}^n}\) whose dihedral angles are all rational multiples of π. (2) For every \({n \geq 3}\), there are uncountably many, mutually non-similar n-simplices whose dihedral angles and π are linearly independent over the rational field. Moreover, in the set of all n-simplices in \({\mathbb{R}^n}\) the subset of such n-simplices is everywhere dense with respect to the Hausdorff distance.  相似文献   

16.
In this paper, we study the reducing subspaces for the multiplication operator by a finite Blaschke product \({\phi}\) on the Dirichlet space D. We prove that any two distinct nontrivial minimal reducing subspaces of \({M_\phi}\) are orthogonal. When the order n of \({\phi}\) is 2 or 3, we show that \({M_\phi}\) is reducible on D if and only if \({\phi}\) is equivalent to \({z^n}\). When the order of \({\phi}\) is 4, we determine the reducing subspaces for \({M_\phi}\), and we see that in this case \({M_\phi}\) can be reducible on D when \({\phi}\) is not equivalent to \({z^4}\). The same phenomenon happens when the order n of \({\phi}\) is not a prime number. Furthermore, we show that \({M_\phi}\) is unitarily equivalent to \({M_{z^n} (n > 1)}\) on D if and only if \({\phi = az^n}\) for some unimodular constant a.  相似文献   

17.
We determine the asymptotics of the independence number of the random d-regular graph for all \({d\geq d_0}\). It is highly concentrated, with constant-order fluctuations around \({n\alpha_*-c_*\log n}\) for explicit constants \({\alpha_*(d)}\) and \({c_*(d)}\). Our proof rigorously confirms the one-step replica symmetry breaking heuristics for this problem, and we believe the techniques will be more broadly applicable to the study of other combinatorial properties of random graphs.  相似文献   

18.
The purpose of this work is to classify, for given integers \({m,\, n\geq 1}\), the bordism class of a closed smooth \({m}\)-manifold \({X^m}\) with a free smooth involution \({\tau}\) with respect to the validity of the Borsuk–Ulam property that for every continuous map \({\phi : X^m \to \mathbb{R}^n}\) there exists a point \({x\in X^m}\) such that \({\phi (x)=\phi (\tau (x))}\). We will classify a given free \({\mathbb{Z}_2}\)-bordism class \({\alpha}\) according to the three possible cases that (a) all representatives \({(X^m, \tau)}\) of \({\alpha}\) satisfy the Borsuk–Ulam property; (b) there are representatives \({({X_{1}^{m}}, \tau_1)}\) and \({({X_{2}^{m}}, \tau_2)}\) of \({\alpha}\) such that \({({X_{1}^{m}}, \tau_1)}\) satisfies the Borsuk–Ulam property but \({({X_{2}^{m}}, \tau_2)}\) does not; (c) no representative \({(X^m, \tau)}\) of \({\alpha}\) satisfies the Borsuk–Ulam property.  相似文献   

19.
We use the variational concept of \({\Gamma}\)-convergence to prove existence, stability and exhibit the geometric structure of four families of stationary solutions to the singularly perturbed parabolic equation \({u_t=\epsilon^2 {\rm div}(k\nabla u)+f(u,x)}\), for \({(t,x)\in \mathbb{R}^+\times\Omega}\), where \({\Omega\subset\mathbb{R}^n}\), \({n\geq 1}\), supplied with no-flux boundary condition. The novelty here lies in the fact that the roots of the bistable function f are not isolated, meaning that the graphs of its roots are allowed to have contact or intersect each other along a Lipschitz-continuous (n ? 1)-dimensional hypersurface \({\gamma \subset \Omega}\); across this hypersurface, the stable equilibria may have corners. The case of intersecting roots stems from the phenomenon known as exchange of stability which is characterized by \({f(\cdot,x)}\) having only two roots.  相似文献   

20.
Let (M, g 0) be a compact Riemann surface with boundary and with negative Euler characteristic. Let f(x) be a strictly negative smooth function on \({\bar{M}}\) and denote by \({\sigma(x)}\) the value of f in the interior and \({\zeta(x)}\) the value of f on the boundary. By studying the evolution of curvatures on M, we prove that there exist a constant \({\lambda_\infty}\) and a conformal metric \({g_\infty}\) such that \({\lambda_\infty\sigma(x)}\) and \({\lambda_\infty\zeta(x)}\) can be realized as the Gaussian curvature and boundary geodesic curvature of \({g_\infty}\) respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号