首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Covalent triazine frameworks(CTFs) as a new type of porous organic polymers(POPs) with nitrogen-rich content, high chemical stability, visible light sensitive, metal-free and fully conjugated structure, have gained considerable attention in the last ten years owing to their great potential in extensive applications, especially for photocatalysis systems. In this review, we propose to provide current progress in the design and synthesis of CTFs, along with an emphasis on their photocatalytic applications. Firstly, a brief background including the development of photocatalytic areas is provided. Then, synthetic strategies of CTFs are described and compared. Furthermore, the evolution of CTF materials in photocatalysis fields and strategies for enhancing photocatalytic performance is presented. Finally, some perspectives and challenges on synthesizing high crystalline CTFs and designing excellent catalytic performance of CTF materials are discussed, inspiring the development of CTF materials in photocatalytic applications.  相似文献   

2.
Converting CO2 into chemicals with electricity generated by renewable energy is a promising way to achieve the goal of carbon neutrality. Carbon-based materials have the advantages of low cost, wide sources and environmental friendliness. In this work, we prepared a series of boron-doped covalent triazine frameworks and found that boron doping can significantly improve the CO selectivity up to 91.2% in the CO2 electroreduction reactions(CO2RR). The effect of different doping ratios on the activity by adjusting the proportion of doped atoms was systematically investigated. This work proves that the doping modification of non-metallic materials is a very effective way to improve their activity, and also lays a foundation for the study of other element doping in the coming future.  相似文献   

3.
Membrane separation of aromatics and aliphatics is a crucial requirement in chemical and petroleum industries. However, this task presents a significant challenge due to the lack of membrane materials that can endure harsh solvents, exhibit molecular specificity, and facilitate easy processing. Herein, we present a novel approach to fabricate a covalent triazine framework (CTF) membrane by employing a mix-monomer strategy. By incorporating a spatial monomer alongside a planar monomer, we were able to subtly modulate both the pore aperture and membrane affinity, enabling preferential permeation of aromatics over aliphatics with molecular weight below 200 Dalton (Da). Consequently, we achieved successful all-liquid phase separation of aromatic/aliphatic mixtures. Our investigation revealed that the synergistic effects of size sieving and the affinity between the permeating molecules and the membrane played a pivotal role in separating these closely resembling species. Furthermore, the membrane exhibited remarkable robustness under practical operating conditions, including prolonged operation time, various feed compositions, different applied pressure, and multiple feed components. This versatile strategy offers a feasible approach to fabricate membranes with molecule selectivity toward aromatic/aliphatic mixtures, taking a significant step forward in addressing the grand challenge of separating small organic molecules through membrane technology.  相似文献   

4.
Porous carbon nitride frameworks (PCNFs) with uniform and rich nitrogen dopants and abundant porosity were successfully fabricated through the direct carbonization of the covalent triazine frameworks (CTFs) at different pyrolysis temperatures and used as supports to anchor and stabilize Ag nanoparticles (NPs) for catalytic CO2 conversion. Importantly, the pyrolysis temperature plays a crucial role in the properties of porous carbon nitride frameworks. The material carbonized at 700 °C showed the highest surface area and micro- and mesoporous structure with a certain interlayer distance. Taking advantage of their unique surface characteristics, PCNF-supported Ag NP catalysts (Ag/PCNF-T, T=pyrolysis temperature) were prepared by a simple chemical method. A series of characterizations revealed that Ag NPs are embedded in the porous carbon nitride frameworks and confined to a relatively small size with high dispersion owing to the assistance of the abundant surface groups and porous structures. The as-obtained Ag/PCNF-T catalysts, especially Ag/PCNF-700, showed excellent catalytic activity, selectivity, and stability for the carboxylation of CO2 with terminal alkynes under mild conditions. This can be due to the existence of abundant nitrogen atoms and diverse porosity, which resulted in highly efficient catalytic activity and stability.  相似文献   

5.
Abstract

A mesoporous covalent triazine framework, PCPDI, was synthesized via an aromatic nitrile trimerization reaction of N,N′-di(4-cyanphenyl)- 3,4,9,10-tetracarboxydiimide (CPDI) by CF3SO3H catalyzed at 40?°C and this method avoids the use of noble metal catalyzers or high temperature reaction. PCPDI exhibits high thermal stability and strong fluorescence. The PCPDI shows ultrahigh sensitivity to tracing o-nitrophenol in chloroform with KSV constant of 1.74?×?105 L mol?1 and detection limit (LOD) of 1.72?×?10?11?mol L?1.  相似文献   

6.
Covalent triazine frameworks (CTFs) with two-dimensional structures have exhibited promising visible-light-induced H2 evolution performance. However, it is still a challenge to improve their activity. Herein, we report π-conjugation-linked CTF-1/GO for boosting photocatalytic H2 evolution. The CTF-1/GO hybrid material was obtained by a facile low-temperature condensation of 1,4-dicyanobenzene in the presence of GO. The results of photocatalytic H2 evolution indicate that the optimum hybrid, CTF-1/GO-3.0, exhibited an H2 evolution rate of 2262.4 μmol ⋅ g−1 ⋅ h−1 under visible light irradiation, which was 9 times that of pure CTF-1. The enhanced photocatalytic performance could be attributed to the fact that GO in CTF-1/GO hybrids not only acts as an electron collector and transporter like a “bridge” to facilitate the separation and transfer of photogenerated charges but also shortens the electron migration path due to its thin sheet layer uniformly distribution over CTF-1. This work could help future development of novel conjugated CTF-based composite materials as high-efficiency photocatalyst for photocatalysis.  相似文献   

7.
单线态氧(1O2)可将硫醚化合物选择性氧化为亚砜,而开发具有高1O2量子产率的高效光敏剂至关重要.本文中我们报道了超薄二维共价有机骨架(COFs)纳米片(NSs)COF-367 NSs的制备和表征.COF-367 NSs在各种有机溶剂中的良好分散性和高效率的光收集赋予其在可见光照射下产生1O2的显著性能,且远优于块体C...  相似文献   

8.
A azine‐linked covalent organic framework, COF‐JLU2, was designed and synthesized by condensation of hydrazine hydrate and 1,3,5‐triformylphloroglucinol under solvothermal conditions for the first time. The new covalent organic framework material combines permanent micropores, high crystallinity, good thermal and chemical stability, and abundant heteroatom activated sites in the skeleton. COF‐JLU2 possesses a moderate BET surface area of over 410 m2 g?1 with a pore volume of 0.56 cm3 g?1. Specifically, COF‐JLU2 displays remarkable carbon dioxide uptake (up to 217 mg g?1) and methane uptake (38 mg g?1) at 273 K and 1 bar, as well as high CO2/N2 (77) selectivity. Furthermore, we further highlight that it exhibits a higher hydrogen storage capacity (16 mg g?1) than those of reported COFs at 77 K and 1 bar.  相似文献   

9.
For metal-free, organic conjugated polymer-based photocatalysts, synthesis of defined nanostructures is still highly challenging. Here, we report the formation of covalent triazine framework (CTF) nanoparticles via a size-controllable confined polymerization strategy. The uniform CTF nanoparticles exhibited significantly enhanced activity in the photocatalytic formation of dibenzofurans compared to the irregular bulk material. The optoelectronic properties of the nanometer-sized CTFs could be easily tuned by copolymerizing small amounts of benzothiadiazole into the conjugated molecular network. This optimization of electronic properties led to a further increase in observed photocatalytic efficiency, resulting in total an 18-fold enhancement compared to the bulk material. Full recyclability of the heterogeneous photocatalysts as well as catalytic activity in dehalogenation, hydroxylation and benzoimidazole formation reactions demonstrated the utility of the designed materials.  相似文献   

10.
Herein, a highly N-rich covalent triazine framework (CTF) is applied as support for a RuIII complex. The bipyridine sites within the CTF provide excellent anchoring points for the [Ru(acac)2(CH3CN)2]PF6 complex. The obtained robust RuIII@bipy-CTF material was applied for the selective tandem aerobic oxidation-Knoevenagel condensation reaction. The presented system shows a high catalytic performance (>80% conversion of alcohols to α, β-unsaturated nitriles) without the use of expensive noble metals. The bipy-CTF not only acts as the catalyst support but also provides the active sites for both aerobic oxidation and Knoevenagel condensation reactions. This work highlights a new perspective for the development of highly efficient and robust heterogeneous catalysts applying CTFs for cascade catalysis.  相似文献   

11.
Covalent triazine frameworks (CTFs) with aromatic triazine linkages have recently received increasing interest for various applications because of their rich nitrogen content and high chemical stability. Owing to the strong aromatic C=N bond and high chemical stability, only a few CTFs are crystalline, and most CTFs are amorphous. Herein we report a new general strategy to give highly crystalline CTFs by in situ formation of aldehyde monomers through the controlled oxidation of alcohols. This general strategy allows a series of crystalline CTFs with different monomers to be prepared, which are shown to have higher thermal stability and enhanced performance in photocatalysis as compared with the less crystalline or amorphous CTFs. This open‐system approach is very simple and convenient, which presents a potential pathway to large‐scale industrial production of crystalline CTFs.  相似文献   

12.
Nitrogen‐enriched porous nanocarbon, graphene, and conductive polymers attract increasing attention for application in supercapacitors. However, electrode materials with a large specific surface area (SSA) and a high nitrogen doping concentration, which is needed for excellent supercapacitors, has not been achieved thus far. Herein, we developed a class of tetracyanoquinodimethane‐derived conductive microporous covalent triazine‐based frameworks (TCNQ‐CTFs) with both high nitrogen content (>8 %) and large SSA (>3600 m2 g?1). These CTFs exhibited excellent specific capacitances with the highest value exceeding 380 F g?1, considerable energy density of 42.8 Wh kg?1, and remarkable cycling stability without any capacitance degradation after 10 000 cycles. This class of CTFs should hold a great potential as high‐performance electrode material for electrochemical energy‐storage systems.  相似文献   

13.
Covalent organic frameworks(COFs) have received profound attention in recent years owing to their tailor-made porosity, large surface area and robust stability. More specifically, 2D COFs with redox-active and π electron-rich units allow efficient charge carriers hopping and ion migration, thus offering great potentials in energy storage. Herein, we present a systematic and concise overview of the recent advances in 2D COFs related to the electrochemical energy field, including supercapacitors, fuel cells, rechargeable lithium batteries, lithium-sulfur batteries, and other metal-ion batteries. In addition, a brief outlook is proposed on the challenges and prospects of COFs as electrode materials for energy storage.  相似文献   

14.
Recently, photo switching porous materials have been widely reported for low energy costed CO2 capture and release via simply remoted light controlling method. However, most reported photo responsive CO2 adsorbents relied on metal organic framework (MOFs) functionalisation with photochromic moieties, and MOF adsorbents still suffered from chemically and thermally unstable issues. Thus, further metal free and highly stable organic photoresponsive adsorbents are necessary to be developed. CTFs, because of their high porosity and stability, have attracted great attention for CO2 capture. Considering the high CO2 uptake capacity and structural tunability of CTFs, it suggests high potential to fabricate the photoswitching CTF materials by the same functionalisation method as MOFs. Herein, the first series of photo switching CTFs were developed for low energy CO2 capture and release. Apart from that, the CO2 switching efficiency could be doubled either through the azobenzene numbers adjusting method or through the previously reported structural alleviation strategy. Furthermore, the pore size distribution of azobenzene functionalised PCTFs also could be tuned under UV exposure, which may contribute to the UV light induced decrease of CO2 uptake capacity. These photoswitching CTFs represented a new kind of porous polymers for low energy costed CO2 capture.  相似文献   

15.
《化学:亚洲杂志》2017,12(4):470-475
Significant progress has been made on the synthesis and application of mesoporous γ‐alumina. To date, little attention has been paid to the synthesis of microporous crystalline alumina. Here, fabrication of microporous crystalline γ‐alumina using a microporous covalent triazine framework (CTF‐1) as a template is described. Microporous crystalline γ‐alumina with a micro‐meso binary pore system was replicated by infiltration of aluminum nitrate into the micropores of the CTF‐1 template through a NH3/water‐vapor‐induced internal hydrolysis method, followed by thermal treatment, and subsequent removal of the CTF‐1 template with a 30 % H2O2 aqueous solution. The obtained crystalline γ‐alumina material exhibits a large surface area (349 m2 g−1) with micropore distribution centered at about 1.27 nm. Ru supported on microporous γ‐Al2O3 can be employed as catalyst for hydrolytic dehydrogenation of ammonia borane, and it exhibits high catalytic activity and good durability. This finding provides a new benchmark for preparing well‐defined crystalline microporous alumina materials by a template method, which can be applied in a wide range of fields.  相似文献   

16.
Methods to synthesize crystalline covalent triazine frameworks (CTFs) are limited and little attention has been paid to development of hydrophilic CTFs and photocatalytic overall water splitting. A route to synthesize crystalline and hydrophilic CTF‐HUST‐A1 with a benzylamine‐functionalized monomer is presented. The base reagent used plays an important role in the enhancement of crystallinity and hydrophilicity. CTF‐HUST‐A1 exhibits good crystallinity, excellent hydrophilicity, and excellent photocatalytic activity in sacrificial photocatalytic hydrogen evolution (hydrogen evolution rate up to 9200 μmol g?1 h?1). Photocatalytic overall water splitting is achieved by depositing dual co‐catalysts in CTF‐HUST‐A1, with H2 evolution and O2 evolution rates of 25.4 μmol g?1 h?1 and 12.9 μmol g?1 h?1 in pure water without using sacrificial agent.  相似文献   

17.
A covalent organic framework integrating naphthalenediimide and triphenylamine units (NT‐COF) is presented. Two‐dimensional porous nanosheets are packed with a high specific surface area of 1276 m2 g?1. Photo/electrochemical measurements reveal the ultrahigh efficient intramolecular charge transfer from the TPA to the NDI and the highly reversible electrochemical reaction in NT‐COF. There is a synergetic effect in NT‐COF between the reversible electrochemical reaction and intramolecular charge transfer with enhanced solar energy efficiency and an accelerated electrochemical reaction. This synergetic mechanism provides the key basis for direct solar‐to‐electrochemical energy conversion/storage. With the NT‐COF as the cathode materials, a solar Li‐ion battery is realized with decreased charge voltage (by 0.5 V), increased discharge voltage (by 0.5 V), and extra 38.7 % battery efficiency.  相似文献   

18.
Hybrid 2D–2D materials composed of perpendicularly oriented covalent organic frameworks (COFs) and graphene were prepared and tested for energy storage applications. Diboronic acid molecules covalently attached to graphene oxide (GO) were used as nucleation sites for directing vertical growth of COF‐1 nanosheets (v‐COF‐GO). The hybrid material has a forest of COF‐1 nanosheets with a thickness of 3 to 15 nm in edge‐on orientation relative to GO. The reaction performed without molecular pillars resulted in uncontrollable growth of thick COF‐1 platelets parallel to the surface of GO. The v‐COF‐GO was converted into a conductive carbon material preserving the nanostructure of precursor with ultrathin porous carbon nanosheets grafted to graphene in edge‐on orientation. It was demonstrated as a high‐performance electrode material for supercapacitors. The molecular pillar approach can be used for preparation of many other 2D‐2D materials with control of their relative orientation.  相似文献   

19.
二维金属有机框架(2D MOF)纳米片具有丰富且易暴露的表面活性位点、 高度有序的孔结构以及多样且可调的化学成分, 在电化学能量存储与转化中有利于降低反应电位, 提高扩散速率和反应速率. 关于2D MOF应用于电化学存储与转化的研究已有大量报道. 本文综合评述了近几年2D MOF的合成进展及其在超电容(SC)、 析氧反应(OER)、 析氢反应(HER)、 氧还原反应(ORR)和二氧化碳还原反应(CRR)的应用, 并对2D MOF作为电催化材料的研究现状和发展前景进行了总结与展望.  相似文献   

20.
Atmospheric water harvesting represents a promising technique to address water stress. Advanced adsorbents have been rationally designed to achieve high water uptake, yet their water sorption kinetics and regeneration temperature greatly limit water production efficiency. Herein, we demonstrated that 2D covalent organic frameworks (COFs), featuring hydrophobic skeleton, proper hydrophilic site density, and 1D open channels significantly lowered the water diffusion and desorption energy barrier. DHTA-Pa COF showed a high water uptake of 0.48 g/g at 30 % R.H. with a remarkable adsorption rate of 0.72 L/Kg/h (298 K) and a desorption rate of 2.58 L/Kg/h (333 K). Moreover, more than 90 % adsorbed water could be released within 20 min at 313 K. This kinetic performance surpassed the reported porous materials and boosted the efficiency for multiple water extraction cycles. It may shed light on the material design strategy to achieve high daily water production with low-energy input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号