首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental pollution and energy shortage are substantial fears to the modern world's long-term sustainability. Water splitting is an essential technique for eco - friendly and sustainable energy storage, as well as a pollution-free method to produce hydrogen. In this regards Metal–organic frameworks have emerged as the most competent multifunctional materials in recent times, due to its large surface areas, adjustable permeability, easy compositional alteration, and capability for usage as precursors with a wide range of morphological forms. Further, MOF-derived carbon-based nanomaterials also offer significant benefits in terms of tunable morphological features and hierarchical permeability, as well as ease of functionalization, making them extremely effective as catalysts or catalysts supports for a wide variety of important reactions. Recent developments in carbon-based MOFs as catalysts for overall water splitting are discussed in this review. We explore how MOFs and carbon-based MOFs might well be beneficial, as well as which methods should be explored for future development. We divided our review into two sections: photocatalytic and electrocatalytic water splitting, and we gathered published literature on carbon-based MOFs materials for their outstanding activity, offers helpful methods for catalysts design and analysis, as well as difficulties This study highlights the developments in MOF derived materials as photo and electro catalysts by explaining respective approaches for their use in overall water splitting.  相似文献   

2.
To achieve efficient water splitting, it is essential to develop catalysts with high electrochemical performance, enhanced durability and tunable properties. Most of the transition metal‐based catalysts employed for the water splitting have been fabricated on the solid‐electrode support by using binder, which decreases the activity and durability of the catalyst system. In this respect, self‐supported metal organic framework (MOF) derived catalysts have been introduced with enhanced catalytic activity and mechanical stability for the electrochemical water splitting. The self‐supported MOF derived catalysts exhibit improved electronic conductivity, high electrochemical surface area, enhanced mechanical stability and strong catalyst‐support interaction. Moreover, these catalysts possess highly porous and hollow structure with designed morphology and multi‐metallic composition. Recently, a tremendous effort has been provided to explore this newly growing field and new dimensions and directions have been achieved. Looking at this point, we have described here the basic principles of catalyst design from self‐supported MOF, structural and interface engineering by controlling the electronic structure of the catalysts to improve the water splitting activity. In addition, the challenges and difficulties associated with this field have been pointed out and addressed for the future progress in this field.  相似文献   

3.
非晶非贵金属催化剂的研究进展及展望   总被引:1,自引:0,他引:1  
近年来电解水产氢作为一种具有前景的制备及储存可再生能源的方法受到了各界的广泛关注.在此过程中,电解水催化剂是提高能源转换效率的关键.优秀的催化剂应具备高催化活性、高稳定性、低成本以及可大规模生产等性质.科研工作者对电解水的两部分反应,即析氢反应以及析氧反应均进行了广泛及深入的研究.目前,贵金属催化剂,如铂基、钌基催化剂的催化活性要高于其他元素催化剂,但由于其价格昂贵,储量较少使得贵金属催化剂无法得到大规模应用,因此发展非贵金属催化剂对绿色能源的发展具有重要意义.一般而言,催化剂的结晶度越高,其催化活性越好,而近年来非晶催化剂以其更高的催化活性位密度也越来越受到人们的重视.同时,非晶催化剂的成分更加灵活,相比晶体催化剂来说非晶催化剂可以在更大范围内对成分进行调节.此外,非晶催化剂的制备通常都在较为温和的反应条件下进行,这也能够降低生成成本,促进其工业化发展.在这篇综述里我们介绍了电解水反应的基本原理,总结了近期非晶析氢、析氧以及双功能催化剂的研究进展.并随后探讨了电解水反应目前的难点并对非晶催化剂的制备进行了展望.  相似文献   

4.
Understanding and improving durability of fuel cell catalysts are currently one of the major goals in fuel cell research. Here, we present a comparative stability study of multi walled carbon nanotube (MWCNT) and conventional carbon supported platinum nanoparticle electrocatalysts for the oxygen reduction reaction (ORR). The aim of this study was to obtain insight into the mechanisms controlling degradation, in particular the role of nanoparticle coarsening and support corrosion effects. A MWCNT-supported 20 wt.% Pt catalyst and a Vulcan XC 72R-supported 20 wt.% Pt catalyst with a BET surface area of around 150 m(2) g(-1) and with a comparable Pt mean particle size were subjected to electrode potential cycling in a "lifetime" stability regime (voltage cycles between 0.5 to 1.0 V vs. RHE) and a "start-up" stability regime (cycles between 0.5 to 1.5 V vs. RHE). Before, during and after potential cycling, the ORR activity and structural/morphological (XRD, TEM) characteristics were recorded and analyzed. Our results did not indicate any activity benefit of MWCNT support for the kinetic rate of ORR. In the "lifetime" regime, the MWCNT supported Pt catalyst showed clearly smaller electrochemically active surface area (ECSA) and mass activity losses compared to the Vulcan XC 72R supported Pt catalyst. In the "start-up" regime, Pt on MWCNT exhibited a reduced relative ECSA loss compared to Pt on Vulcan XC 72R. We directly imaged the trace of a migrating platinum particle inside a MWCNT suggesting enhanced adhesion between Pt atoms and the graphene tube walls. Our data suggests that the ECSA loss differences between the two catalysts are not controlled by particle growth. We rather conclude that over the time scale of our stability tests (10,000 potential cycles and beyond), the macroscopic ECSA loss is primarily controlled by carbon corrosion associated with Pt particle detachment and loss of electrical contact.  相似文献   

5.
《印度化学会志》2022,99(11):100775
A bifunctional electrocatalyst interface requires a superior charge transfer and good electric conductivity to produce an efficient and stable water splitting reaction. In the context of controlling the electrochemical activity of bifunctional catalytic materials, we demonstrate a novel approach to bridge conductive C-Qd-Mn interfaces with precise control. The excellent performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) can be dominantly attributed to the unique structure of C-Qds-Mn, which provides abundant active sites and facilitates electron transfer between electrode and electrolyte. Eco-friendly C-Qds were synthesized using a large-scale thermal assisted technique and utilized as electrocatalysts with Mn3O4 in alkaline splitting ToF (Turn over Frequency) calculation to make an effective combination. Due to their increased ECSA, conductivity, and electron-hole transfer, the prepared C-Qds-Mn delivered excellent HER/OER (0.494 V/1.6671V) activity, lower Standard deviation 0.006 V and 0.009V, surpassing the 10 mA limit comparable to commercially.  相似文献   

6.
Developing large scale deposition techniques to fabricate thin porous films with suitable opto-electro nic properties for water catalysis is a necessity to mitigate climate change and have a sustainable environment.In this review,flame spray pyrolysis(FSP)technique,a rapid and scalable methodology to synthesize nanostructured transitional metal oxide films with designed functionalities,is firstly introduced.Furthermore,applications in electrochemical(EC)and photoelectrochemical(PEC)water splitting for the production of hydrogen fuel is also presented.The high combustion temperature and the aggregation of flame aerosol ensure that the FSP-made films possess high crystallinity,tunable porosity and high surface areas,making this method suitable either as catalysts for EC water splitting or as efficient semiconductor materials for PEC water splitting.Finally,a perspective on the next generation FSP engineered films with potential applications in energy storage and conversion is described.  相似文献   

7.
光电催化分解水可以将充足的太阳能直接转化存储为绿色清洁的氢能,然而光阳极表面缓慢的析氧反应动力学严重限制了太阳能到氢能的转化效率。我们通过一种简单的S-O键合策略实现BiVO4光阳极与FeNi催化剂的界面耦合(S:BiVO4-FeNi),其光电催化分解水的光电流达到6.43 mA/cm2(1.23 VRHE, AM 1.5G)。进一步研究结果表明:界面S-O键合能够有效实现BiVO4光阳极光生电荷分离并促进空穴向FeNi催化剂表面迁移。同时,S-O键合可以进一步调控FeNi催化剂表面的电荷分布,从而有效提高光电化学分解水析氧活性和稳定性。该工作为设计构建具有高效、稳定的太阳能光电催化分解水体系提供了一种新的研究策略。  相似文献   

8.
随着化石燃料大量使用带来的气候变化和环境污染问题日趋严重,寻找清洁高效的可再生能源用做传统化石燃料的替代品,已经成为当前的研究热点。光驱动的水分解反应被认为是太阳能制氢的可行途径。水的全分解包括两个半反应-水的氧化和质子还原。其中水的氧化反应是一个涉及四个电子和四个质子转移的复杂过程,需要很高的活化能,被认为是全分解水反应的瓶颈步骤。因此,开发高效、稳定、廉价丰产的水氧化催化剂是人工光合作用突破的关键因素。立方烷具有类似自然界光合作用酶光系统II(PSII)活性中心Mn_4CaO_5簇的结构,世界各国的科学家受自然界光合作用的启发,开发出了许多基于过渡金属的立方烷结构的催化剂,常见的有锰、钴和铜等立方烷催化剂。本文简要地综述了近年来立方烷分子催化剂在光催化水氧化中的研究进展。首先介绍了立方烷基光催化水氧化反应历程,继而详细介绍了基于有机配体的立方烷配合物和全无机的多金属氧酸盐立方烷水氧化催化剂,其次是半导体(BiVO4或聚合的氮化碳(PCN))为捕光材料复合立方烷分子催化剂的水氧化体系最新研究进展。最后总结并展望了该领域所面临的挑战及其前景。  相似文献   

9.
Hydrogen storage in the form of intermediate artificial fuels such as methanol is important for future chemical and energy applications, and the electrochemical regeneration of hydrogen from methanol is thermodynamically favorable compared to direct water splitting. However, CO produced from methanol oxidation can adsorb to H2-evolution catalysts and drastically reduce activity. In this study, we explore the origins of CO immunity in Mo-containing H2-evolution catalysts. Unlike conventional catalysts such as Pt or Ni, Mo-based catalysts display remarkable immunity to CO poisoning. The origin of this behavior in NiMo appears to arise from the apparent inability of CO to bind Mo under electrocatalytic conditions, with mechanistic consequences for the H2-evolution reaction (HER) in these systems. This specific property of Mo-based HER catalysts makes them ideal in environments where poisons might be present.  相似文献   

10.
The liquid structures of deep eutectic solvents (DESs) based on hydrated metal halides and their application as electrolytes have been widely studied. However, little attention has been paid to the direct use of this type of DES in the preparation of micro‐/nanomaterials. Herein, an FeCl3 ? 6 H2O/urea DES was used in the one‐step synthesis of NiFe‐LDH_D with a nanoflower morphology. In alkaline media, this catalyst promoted excellent electrocatalytic activity for the oxidation of urea at potential of 1.32 V (vs. RHE) and for the oxygen‐evolution reaction at a potential of 1.39 V to achieve a current density of 10 mA cm?2. These results were superior to the results with NiFe‐LDH/NF that was obtained from an aqueous solution of FeCl3, as well as most of the previously reported transition‐metal catalysts. Furthermore, NiFe‐LDH_D/NF could be readily implemented as both a cathode and an anode for the electrolysis of urea and water splitting. The use of hydrated‐metal‐halide‐based DESs for the preparation of LDH catalysts through a dipping‐redox strategy should both enrich the research of DESs and offer guidance for the rational surface engineering of catalysts for the electrolysis of urea and overall water splitting with high performance.  相似文献   

11.
Hydrogen is a green energy source with zero carbon emissions and renewable properties. Green hydrogen, produced via water electrolysis, can efficiently harness excess renewable energy during peak periods, making it a key player in grid stabilization through processes like power-to-gas. Consequently, there is a pressing need to develop catalysts with high activity, stability, and cost-effectiveness in the energy sector. The development of electrochemical (EC) water splitting, a promising path to meet alternative energy demands, however, is hindered by two main challenges that persist in water splitting: the anodic oxygen evolution reaction (OER) catalysts still need lower overpotential, and they must have enough stability with high catalytic activity. Both factors determine water electrolysis reactions' overall energy consumption and commercialization potential. This article introduces several significant parameters for assessing catalyst performance; three primary OER mechanisms are also briefly reviewed. Thereby, numerous electrocatalysts for OER are categorized by their composition and morphology. Furthermore, we generalize a common phenomenon that occurs at the surface of catalysts during the OER process. It is deduced that the surface transformation from as-prepared to an activated state, that is, the surface-environment change of the active site due to redox-induced dissolution and re-deposition, plays a critical role in OER. On the other hand, generating a layered structure leads to the accommodation of intercalated water molecules, which may enhance the activity and robustness via hydrogen bonds and dominate the absorption energy of oxygen species on the metal site. Lastly, we enumerate several in-/ex-situ methodologies that can discriminate the real active sites of the bulk, near-surface region, interface, and intermediates adsorbed on the electrocatalyst surface. Further investigation is needed to unveil the interaction between active sites and embedded water molecules in EC catalytic processes. This paper provides a novel perspective of the intercalated water for future development of OER electrocatalysts, simultaneously considering performance and stability.  相似文献   

12.
Reducing the noble-metal catalyst content of acid Polymer Electrolyte Membrane (PEM) water electrolyzers without compromising catalytic activity and stability is a goal of fundamental scientific interest and substantial technical importance for cost-effective hydrogen-based energy storage. This study presents nanostructured iridium nanodendrites (Ir-ND) supported on antimony doped tin oxide (ATO) as efficient and stable water splitting catalysts for PEM electrolyzers. The active Ir-ND structures exhibited superior structural and morphological properties, such as particle size and surface area compared to commercial state-of-art Ir catalysts. Supported on tailored corrosion-stable conductive oxides, the Ir-ND catalysts exhibited a more than 2-fold larger kinetic water splitting activity compared with supported Ir nanoparticles, and a more than 8-fold larger catalytic activity than commercial Ir blacks. In single-cell PEM electrolyzer tests, the Ir-ND/ATO outperformed commercial Ir catalysts more than 2-fold at technological current densities of 1.5 A cm–2 at a mere 1.80 V cell voltage, while showing excellent durability under constant current conditions. We conclude that Ir-ND/ATO catalysts have the potential to substantially reduce the required noble metal loading, while maintaining their catalytic performance, both in idealized three-electrode set ups and in the real electrolyzer device environments.  相似文献   

13.
Electrocatalytic water splitting has been considered as a promising strategy for the sustainable evolution of hydrogen energy and storage of intermittent electric energy. Efficient catalysts for electrocatalytic water splitting are urgently demanded to decrease the overpotentials and promote the sluggish reaction kinetics. Carbon-based composites, including heteroatom-doped carbon materials, metals/alloys@carbon composites, metal compounds@carbon composites, and atomically dispersed metal sites@carbon composites have been widely used as the catalysts due to their fascinating properties. However, these electrocatalysts are almost powdery form, and should be cast on the current collector by using the polymeric binder, which would result in the unsatisfied electrocatalytic performance. In comparison, a self-supported electrode architecture is highly attractive. Recently, self-supported metal–organic frameworks (MOFs) constructed by coordination of metal centers and organic ligands have been considered as suitable templates/precursors to construct free-standing carbon-based composites grown on conductive substrate. MOFs-derived carbon-based composites have various merits, such as the well-aligned array architecture and evenly distributed active sites, and easy functionalization with other species, which make them suitable alternatives to non-noble metal-included electrocatalysts. In this review, we intend to show the research progresses by employment of MOFs as precursors to prepare self-supported carbon-based composites. Focusing on these MOFs-derived carbon-based nanomaterials, the latest advances in their controllable synthesis, composition regulation, electrocatalytic performances in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting (OWS) are presented. Finally, the challenges and perspectives are showed for the further developments of MOFs-derived self-supported carbon-based nanomaterials in electrocatalytic reactions.  相似文献   

14.
The development of highly efficient non-precious metal catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is key for large-scale hydrogen evolution through water splitting technology. Here, we report an air-stable Cu-based nanostructure consisting of Mn doped CuCl and CuO (CuCl/CuO(Mn)-NF) as a dual functional electrocatalyst for water splitting. CuCl is identified as the main active component, together with Mn doping and the synergistic effect between CuCl and CuO are found to make responsibility for the excellent OER and HER catalytic activity and stability. The assembled electrolyzes also exhibit decent water splitting performance. This work not only provides a simple method for preparing Cu-based composite catalyst, but also demonstrates the great potential of Cu-based non-noble metal electrocatalysts for water splitting and other renewable energy conversion technologies.  相似文献   

15.
Photosynthesis has been for many years a fascinating source of inspiration for the development of model systems able to achieve efficient light-to-chemical energetic transduction. This field of research, called "artificial photosynthesis," is currently the subject of intense interest, driven by the aim of converting solar energy into the carbon-free fuel hydrogen through the light-driven water splitting. In this review, we highlight the recent achievements on light-driven water oxidation and hydrogen production by molecular catalysts and we shed light on the perspectives in terms of implementation into water splitting technological devices.  相似文献   

16.
催化剂的活性与其结构紧密相关,研究催化剂的构效关系以及可控合成高效电催化剂, 并探究其催化机制, 一直是科学研究的核心。贵金属铂是优异的电解水析氢的催化剂, 同时也是直接醇燃料电池阳极氧化的良好催化剂,而贵金属钌是优异的电解水析氧催化剂。这些与燃料电池及氢能相关的重要反应催化剂,可通过合成Pt、Au及Ru的合金催化剂, 通过应力效应、电子效应及团簇效应, 可有效提高金属催化剂的活性, 并实现多功能电催化性能。本文报道了可控合成低结晶度的AuPt-Ru合金异质结,并通过元素扫描分析及X射线衍射分析确认其结构。该催化剂表现出了非常优异的电催化氧化乙醇活性, 其归一化到Pt的质量活性达到了为21.4 A·mg-1Pt, 远远高于对照组样品AuPt及RuAuPt混合相催化剂及文献报道样品。催化剂同样表现出了非常好的乙醇氧化稳定性, 但是其活性的衰减与其Ru组分的流失紧密相关。我们同时通过电化学原位红外光谱,研究了该催化剂乙醇氧化中间产物, 分析了其反应机理。该催化剂同样表现出了优异的碱性电解水析氢及析氧催化活性,其析氢电流10 mA·cm-2对应的过电位为30 mV, Tafel斜率为45 mV·dec-1, 优于AuPt及RuPtAu对照组样品。该催化剂优异的电化学性能主要归结于其低结晶度和异质结及其伴随的应力效应及团簇效应。本报道提供了一种可控合成具有异质结结构的金属合金催化剂, 突出了其对实现多功能、 高性能合金电催化剂的重要性。  相似文献   

17.
电催化水分解制氢是可以形成闭环的生产过程, 起始原料与副产物均为水、 过程清洁无污染, 是极具希望的产氢策略. 目前制约其发展的瓶颈之一是价格昂贵的Pt基贵金属催化剂. 为推动电催化分解水制氢的普及, 亟待开发低成本非贵金属催化剂. 在众多备选非贵金属催化材料中, 纳米层状结构二硫化钼(MoS2)因催化效果可期、 价格低而获得了广泛关注. 然而, 通常条件下易于获得的层状结构2H相MoS2大面积的基面部分显示惰性, 仅在片层边缘处存在少量活性位点, 且导电性较差, 因而尚不能替代Pt基催化剂, 而如何增加其活性位点数量和提高其导电性成为亟待解决的问题; 另一方面, 1T相MoS2虽然活性高、 导电性好, 但却存在制备困难及稳定性差的问题. 鉴于此, 研究者通过对纳米MoS2进行掺杂改性实现了其活性与稳定性的有效提升. 本文对非贵金属纳米MoS2催化剂掺杂改性的方法、 机理及其电催化水解制氢性能的相关研究进行了总结与讨论. 作为典型的非贵金属电解水析氢催化剂, MoS2具有巨大发展潜力, 本文能够对相关非贵金属催化剂的研发提供有益的参考.  相似文献   

18.

Photoelectrochemical water splitting is mostly impeded by the slow kinetics of the oxygen evolution reaction. The construction of photoanodes that appreciably enhance the efficiency of this process is of vital technological importance towards solar fuel synthesis. In this work, Mo-modified BiVO4 (Mo:BiVO4), a promising water splitting photoanode, was modified with various oxygen evolution catalysts in two distinct configurations, with the catalysts either deposited on the surface of Mo:BiVO4 or embedded inside a Mo:BiVO4 film. The investigated catalysts included monometallic, bimetallic, and trimetallic oxides with spinel and layered structures, and nickel boride (NixB). In order to follow the influence of the incorporated catalysts and their respective properties, as well as the photoanode architecture on photoelectrochemical water oxidation, the fabricated photoanodes were characterised for their optical, morphological, and structural properties, photoelectrocatalytic activity with respect to evolved oxygen, and recombination rates of the photogenerated charge carriers. The architecture of the catalyst-modified Mo:BiVO4 photoanode was found to play a more decisive role than the nature of the catalyst on the performance of the photoanode in photoelectrocatalytic water oxidation. Differences in the photoelectrocatalytic activity of the various catalyst-modified Mo:BiVO4 photoanodes are attributed to the electronic structure of the materials revealed through differences in the Fermi energy levels. This work thus expands on the current knowledge towards the design of future practical photoanodes for photoelectrocatalytic water oxidation.

  相似文献   

19.
电催化水分解是一种可持续的绿色产氢技术,该技术在工业化的大规模应用急需开发高效稳定的非贵金属催化剂,用于提高析氧反应(OER)的反应速率.研究发现,钙钛矿氧化物是优异的OER催化剂,但是对于发生在催化剂-电解质固液界面上的反应机理仍有争论.目前普遍认为,在OER反应过程中,水分子吸附在金属氧化物催化剂表面的金属活性中心...  相似文献   

20.
Oxygen evolution reaction(OER) is admitted to an important half reaction in water splitting for sustainable hydrogen production.The sluggish four-electron process is known to be the bottleneck for enhancing the efficiency of OER.In this regard,tremendous efforts have been devoted to developing effective catalysts for OER.In addition to Ir-or Ru-based oxides taken as the benchmark,transition metal carbides have attracted ever-increasing interest due to the high activity and stability as low-cost OER electrocatalysts.In this review,the transition metal carbides for water oxidation electrocatalysis concerning design strategies and synthesis are briefly summarized.Some typical applications for various carbides are also highlighted.Besides,the development trends and outlook are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号