首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aim to explore new (2+1)-dimensional nonlinear equations which possess lump solutions. Through the Hirota bilinear method, we formulate a combined fourth-order nonlinear equation while guaranteeing the existence of lump solutions. The class of lump solutions is constructed explicitly in terms of the coefficients of the combined nonlinear equation via symbolic computations. Specific examples are discussed to show the richness of the considered combined nonlinear equation. Three dimensional plots and contour plots of specific lump solutions to two specially chosen cases of the equation are made to shed light on the presented lump solutions.  相似文献   

2.
A (2 + 1)-dimensional generalized Bogoyavlensky-Konopelchenko equation that possesses a Hirota bilinear form is considered. Starting with its Hirota bilinear form, a class of explicit lump solutions is computed through conducting symbolic computations with Maple, and a few plots of a specicpresented lump solution are made to shed light on the characteristics of lumps. The result provides a new example of (2 + 1)-dimensional nonlinear partial differential equations which possess lump solutions.  相似文献   

3.
In this paper, multiple lump solutions of the (2+1)-dimensional Konopelchenko–Dubrovsky equation are obtained by means of the Hirota bilinear method. With the aid of positive quartic-quadratic-functions, we can get the 1-lump solutions, 3-lump solutions, and 6-lump solutions. Via the density plots and three-dimensional plots, the dynamic properties of multiple lump solutions are discussed by choosing the appropriate parameters. It is expected that our results are valuable for revealing the high-dimensional dynamic phenomenon of the nonlinear evolution equations.  相似文献   

4.
Taking a class of linear(4+1)-dimensional partial differential equations as examples, we would like to show that there exist lump solutions and interaction solutions in(4+1)-dimensions. We will compute abundant lump solutions and interaction solutions to the considered linear(4+1)-dimensional partial differential equations via symbolic computations,and plot three specific solutions with Maple plot tools, which supplements the existing literature on lump, rogue wave and breather solutions and their interaction solutions in soliton theory.  相似文献   

5.
In this research, the lump solution, which is rationally localized and decays along the directions of space variables, of a 2D Toda equation is studied. The effective method of constructing the lump solutions of this 2D Toda equation is derived, and the constraint conditions that make the lump solutions analytical and positive are obtained as well. Finally, three classes of lump solutions are constructed, 3D plots, density plots, and contour plots are given to illustrate this proposed method.  相似文献   

6.
Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable transformations u=2(ln?f)x and u=2(ln?f)xx, where x is one spatial variable. Applications are made for a few generalized KP and BKP equations.  相似文献   

7.
Exact solutions of sine Gordon and multiple sine Gordon equations are constructed in terms of solutions of a linear base equation, the Klein Gordon equation and also in terms of nonlinear base equations where the nonlinearity is polynomial in the dependent variable. Further, exact solutions of nonlinear generalizations of the Schrodinger equation and of additional nonlinear generalizations of the Klein Gordon equation are constructed in terms of solutions of linear base equations. Finally, solutions with spherical symmetry, of nonlinear Klein Gordon equations are given.  相似文献   

8.
In this work, the Exp-function method is employed to find new wave solutions for the Sine-Gordon and Ostrovsky equation. The equations are simplified to the nonlinear partial differential equations and then different types of exact solutions are extracted by this method. It is shown that the Exp-function method is a powerful analytical method for solving other nonlinear equations occurring in nonlinear physical phenomena. Results are presented in contour plots that show the different values of effective parameters on the velocity profiles.  相似文献   

9.
In this paper we establish pointwise decay estimates of solutions to some linear elliptic equations by using the Nash–Moser iteration arguments and the ODE method. As applications we obtain sharp Gaussian decay estimates for solutions to nonlinear elliptic equations that are related with self-similar solutions to nonlinear heat equations and standing wave solutions to nonlinear Schrödinger equations with harmonic potential.  相似文献   

10.
Linear and nonlinear elliptic complex partial differential equations of higher‐order are considered under Schwarz conditions in the upper‐half plane. Firstly, using the integral representations for the solutions of the inhomogeneous polyanalytic equation with Schwarz conditions, a class of integral operators is introduced together with some of their properties. Then, these operators are used to transform the problem for linear equations into singular integral equations. In the case of nonlinear equations such a transformation yields a system of integro‐differential equations. Existence of the solutions of the relevant boundary value problems for linear and nonlinear equations are discussed via Fredholm theory and fixed point theorems, respectively.  相似文献   

11.
The Hirota bilinear method is prepared for searching the diverse soliton solutions for the fractional generalized Calogero‐Bogoyavlenskii‐Schiff‐Bogoyavlensky‐Konopelchenko (CBS‐BK) equation. Also, the Hirota bilinear method is used to finding the lump and interaction with two stripe soliton solutions. Interaction among lumps, periodic waves, and multi‐kink soliton solutions will be investigated. Also, the solitary wave, periodic wave, and cross‐kink wave solutions will be examined for the fractional gCBS‐BK equation. The graphs for various fractional order α are plotted to contain 3D plot, contour plot, density plot, and 2D plot. We construct the exact lump and interaction among other types solutions, by solving the under‐determined nonlinear system of algebraic equations for the associated parameters. Finally, analysis and graphical simulation are presented to show the dynamical characteristics of our solutions and the interaction behaviors are revealed. The existence conditions are employed to discuss the available got solutions.  相似文献   

12.
This paper targets to investigate the solution of linear and nonlinear ordinary differential equations with fuzzy initial condition. Here, two improved Euler type methods have been proposed in order to obtain numerical solution of the problem. Along with this, an exact methodology is also discussed. The obtained results are depicted in term of plots to show the efficiency of the proposed methods. The solutions are compared with the known results and are found that those obtained by the proposed methods are tighter than the results from the existing method.  相似文献   

13.
In this paper, we focus on the interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation. With symbolic computation, two types of interaction solutions including lump-kink and lump-soliton ones are derived through mixing two positive quadratic functions with an exponential function, or two positive quadratic functions with a hyperbolic cosine function in the bilinear equation. The completely non-elastic interaction between a lump and a stripe is presented, which shows the lump is drowned or shallowed by the stripe. The interaction between lump and soliton is also given, where the lump moves from one branch to the other branch of the soliton. These phenomena exhibit the dynamics of nonlinear waves and the solutions are useful for the study on interaction behavior of nonlinear waves in shallow water, plasma, nonlinear optics and Bose–Einstein condensates.  相似文献   

14.
A spontaneous symmetry breaking (or hidden symmetry) model is reduced to a system nonlinear evolution equations integrable via an appropriate change of variables, by means of the asymptotic perturbation (AP) method, based on spatio-temporal rescaling and Fourier expansion. It is demonstrated the existence of coherent solutions as well as chaotic and fractal patterns, due to the possibility of selecting appropriately some arbitrary functions. Dromion, lump, breather, instanton and ring soliton solutions are derived and the interaction between these coherent solutions are completely elastic, because they pass through each other and preserve their shapes and velocities, the only change being a phase shift. Finally, one can construct lower dimensional chaotic patterns such as chaotic–chaotic patterns, periodic–chaotic patterns, chaotic soliton and dromion patterns. In a similar way, fractal dromion and lump patterns as well as stochastic fractal excitations can appear in the solution.  相似文献   

15.
The aim of the paper is to propose a generalized ansätze for constructing exact solutions to nonlinear ordinary differential equations. This unified transformation is manipulated to acquire analytical solutions that are general solutions of simpler linear or nonlinear systems of ordinary differential equations that are either integrable or possess special solutions. The method is implemented to obtain several families of traveling wave solutions for a class of nonlinear evolution equations and for higher order wave equations of KdV type (I).  相似文献   

16.
In this paper, a class of systems of matrix nonlinear differential equations containing as particular cases the systems of coupled Riccati differential equations arising in connection with control of some linear stochastic systems is considered.The system of differential equations considered in this paper are converted in a suitable nonlinear differential equation on a finite-dimensional Hilbert space adequately choosen.This allows us to use the positivity properties of the linear evolution operator defined by the linear differential equations of Lyapunov type.Our aim is to investigate properties of stabilizing and bounded solutions of the considered differential equations and to obtain some conditions ensuring the existence of such solutions.Conditions providing the existence of a maximal solution (minimal solution respectively) with respect to some classes of global solutions are presented. It is shown that if the coefficients of the equations are periodic functions all these special solutions (stabilizing, maximal, minimal) are periodic functions, too.Whenever possible the probabilistic arguments were avoided and so the results proved in the paper appear as results in the field of differential equations with interest in themselves.  相似文献   

17.
In this paper, we study the existence and uniqueness of positive solutions for a class of nonlinear operator equations on ordered Banach spaces. Various applications are also considered to illustrate our obtained results (existence of solutions to quadratic integral equations with a linear modification of the argument, positive solution of second-order Neumann boundary value problem, and positive definite solutions of a class of nonlinear matrix equations).  相似文献   

18.
In this paper, we consider a nonlinear system of reaction diffusion equations arising from mathematical neuroscience and two nonlinear scalar reaction diffusion equations under some assumptions on their coefficients. The main purpose is to couple together linearized stability criterion (the equivalence of the nonlinear stability, the linear stability and the spectral stability of the standing pulse solutions) and Evans functions to accomplish the existence and instability of standing pulse solutions of the nonlinear system of reaction diffusion equations and the nonlinear scalar reaction diffusion equations. The Evans functions for the standing pulse solutions are constructed explicitly.  相似文献   

19.
It has been shown that many fully nonlinear wave equations with nonlinear dispersion terms possess compacton solutions and solitary patterns solutions. In this paper, with the aid of Maple, the mKdV equation, the equation with a source term, the five order KdV-like equation and the KdV–mKdV equation are investigated using some new, generalized transformations. As a consequence, it is shown that these equations with linear dispersion terms admit new compacton-like solutions and solitary patterns-like solutions. These transformations can be also extended to other nonlinear wave equations with nonlinear dispersion terms to seek new compacton-like solutions and solitary patterns-like solutions.  相似文献   

20.
In this survey, results on the existence, growth, uniqueness, and value distribution of meromorphic (or entire) solutions of linear partial differential equations of the second order with polynomial coefficients that are similar or different from that of meromorphic solutions of linear ordinary differential equations have been obtained. We have characterized those entire solutions of a special partial differential equation that relate to Jacobian polynomials. We prove a uniqueness theorem of meromorphic functions of several complex variables sharing three values taking into account multiplicity such that one of the meromorphic functions satisfies a nonlinear partial differential equations of the first order with meromorphic coefficients, which extends the Brosch??s uniqueness theorem related to meromorphic solutions of nonlinear ordinary differential equations of the first order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号