首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of H(2) in highly excited vibrational and rotational states (v=0-5, J=0-17) from the 157 nm photodissociation of amorphous solid water ice films at 100 K was observed directly using resonance-enhanced multiphoton ionization. Weaker signals from H(2)(v=2,3 and 4) were obtained from 157 nm photolysis of polycrystalline ice, but H(2)(v=0 and 1) populations in this case were below the detection limit. The H(2) products show two distinct formation mechanisms. Endothermic abstraction of a hydrogen atom from H(2)O by a photolytically produced H atom yields vibrationally cold H(2) products, whereas exothermic recombination of two H-atom photoproducts yields H(2) molecules with a highly excited vibrational distribution and non-Boltzmann rotational population distributions as has been predicted previously by both quantum-mechanical and molecular dynamics calculations.  相似文献   

2.
《Chemical physics letters》1987,133(6):501-506
The photodissociation dynamics of water in its first absorption band has been studied in detail by photolyzing room-tempera-ture and jet-cooled H2O with an ArF excimer laser at 193 nm. The fate of the ejected OH(X 2Π) photofragments was probed by laser-induced fluorescence. The excess energy is transferred almost exclusively into translational motion of the products, ∂t = 0.97. The rotational distribution depends strongly on the initial temperature. For warm water (T = 300 K), the rotational distribution can be described by a Boltzmann distribution with a temperature parameter of 400 K. No significant difference between the two Λ components, probed via Q and R, P lines, was observed. In the case of jet-cooled H2O the rotational distribution of the Π component of the Λ doublets can be described by a temperature parameter of 330 K; that of the Π+ component strongly deviates from a Boltzmann distribution. The Λ doublet population shows an increasing inversion with increasing JOH. The dissociation process does not distinguish between the two spin-orbit states and the spin is only a spectator in the dissociation process of H2O at 193 nm. These results are compared with observations of the photolysis of water at 157 nm.  相似文献   

3.
The collisionless photodissociation dynamics of isobutene (i-C(4)H(8)) at 193 nm via photofragment translational spectroscopy are reported. Two major photodissociation channels were identified: H + C(4)H(7) and CH(3) + CH(3)CCH(2). Translational energy distributions indicate that both channels result from statistical decay on the ground state surface. Although the CH(3) loss channel lies 13 kcal mol(-1) higher in energy, the CH(3):H branching ratio was found to be 1.7 (5), in reasonable agreement with RRKM calculations.  相似文献   

4.
Photodissociation of benzene at 193 nm has been investigated using the photofragment translational spectroscopy (PTS) technique. H atom elimination channel for benzene at 193 nm is from a one‐photon dissociation process, while H2 and CH3 elimination channels come from a two‐photon excitation process.  相似文献   

5.
The photodissociation of propargyl chloride (C3H3Cl) has been studied at 193 nm. Ion imaging experiments with state-selective detection of the Cl atoms and single-photon ionization of the C3H3 radicals were performed, along with measurements of the Cl + C3H3 and HCl + C3H2 recoil kinetic energy distributions, using a scattering apparatus with electron bombardment ionization detection to resolve the competing Cl and HCl elimination channels. The experiments allow the determination of the Cl (2P3/2) and Cl (2P1/2) (hereafter Cl) branching fractions associated with the C-Cl bond fission, which are determined to be 0.5 +/- 0.1 for both channels. Although prior translational spectroscopy studies by others had concluded that the low velocity signal at the Cl+ mass was due to daughter fragments of the HCl elimination products, the present work shows that Cl atoms are produced with a bimodal recoil kinetic energy distribution. The major C-Cl bond fission channel, with a narrow recoil kinetic energy distribution peaking near 40 kcal/mol, produces both Cl and Cl, whereas the minor (5%) channel, partitioning much less energy to relative kinetic energy, produces only ground spin-orbit state Cl atoms. The maximum internal energy of the radicals produced in the low-recoil-kinetic-energy channel is consistent with this channel producing electronically excited propargyl radicals. Finally, in contrast to previous studies, the present work determines the HCl recoil kinetic energy distribution and identifies the possible contribution to this spectrum from propargyl radicals cracking to C3+ ions in the mass spectrometer.  相似文献   

6.
Photodissociation dynamics of benzyl alcohol, C(6)H(5)CH(2)OH and C(6)H(5)CD(2)OH, in a molecular beam was investigated at 193 nm using multimass ion imaging techniques. Four dissociation channels were observed, including OH elimination and H(2)O elimination from the ground electronic state, H atom elimination (from OH functional group), and CH(2)OH elimination from the triplet state. The dissociation rate on the ground state was found to be 7.7 × 10(6) s(-1). Comparison to the potential energy surfaces from ab initio calculations, dissociation rate, and branching ratio from Rice-Ramsperger-Kassel-Marcus calculations were made.  相似文献   

7.
Photofragment translational spectroscopy was used to identify the primary and secondary reaction pathways in 193 nm photodissociation of chlorine azide (ClN(3)) under collision-free conditions. Both the molecular elimination (NCl+N(2)) and the radical bond rupture channel (Cl+N(3)) were investigated and compared with earlier results at 248 nm. The radical channel strongly dominates, just as at 248 nm. At 193 nm, the ClN(3) (C (1)A(")) state is excited, rather than the B (1)A(') state that is accessed at 248 nm, resulting in different photofragment angular distributions. The chlorine translational energy distribution probing the dynamics of the radical bond rupture channel shows three distinct peaks, with the two fastest peaks occurring at the same translational energies as the two peaks seen at 248 nm that were previously assigned to linear and "high energy" N(3). Hence, nearly all the additional photon energy relative to 248 nm appears as N(3) internal excitation rather than as translational energy, resulting in considerably more spontaneous dissociation of N(3) to N(2)+N.  相似文献   

8.
In this work, we used time-sliced ion velocity imaging to study the photodissociation dynamics of MgO at \mbox{193 nm}. Three dissociation pathways are found through the speed and angular distributions of magnesium. One pathway is the one-photon excitation of MgO(X\begin{document}$^1\Sigma^+$\end{document}) to MgO(G\begin{document}$^1\Pi$\end{document}) followed by spin-orbit coupling between the G\begin{document}$^1\Pi$\end{document}, 3\begin{document}$^3\Pi$\end{document} and 1\begin{document}$^5\Pi$\end{document} states, and finally dissociated to the Mg(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{u}$\end{document})+O(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{g}$\end{document}) along the 1\begin{document}$^5\Pi$\end{document} surface. The other two pathways are one-photon absorption of MgO(A\begin{document}$^1\Pi$\end{document}) state to MgO(G\begin{document}$^1\Pi$\end{document}) and MgO(4\begin{document}$^1\Pi$\end{document}) state to dissociate into Mg(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{u}$\end{document})+O(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{g}$\end{document}) and Mg(\begin{document}$^1$\end{document}S\begin{document}$_\textrm{g}$\end{document})+O(\begin{document}$^1$\end{document}S\begin{document}$_\textrm{g}$\end{document}), respectively. The anisotropy parameters of the dissociation pathways are related to the lifetime of the vibrational energy levels and the coupling of rotational and vibronic spin-orbit states. The total kinetic energy analysis gives \begin{document}$D_0$\end{document}(Mg\begin{document}$-$\end{document}O)=21645\begin{document}$\pm$\end{document}50 cm\begin{document}$^{-1}$\end{document}.  相似文献   

9.
Photodissociation dynamics of 1,2-butadiene at 157 nm   总被引:1,自引:0,他引:1  
Photodissociation dynamics of 1,2-butadiene at 157 nm has been investigated using a molecular beam apparatus based on photoionization using vacuum ultraviolet synchrotron radiation. Six dissociation pathways have been observed. The observed channels are C4H5+H, C4H4+H2, C3H3+CH3, C2H3+C2H3, C2H4+C2H2, and C4H4+H+H. Among all the dissociation channels, the C3H3+CH3 channel is found to be the dominant process. The product kinetic energy distributions of all dissociation channels have been determined from simulating the experimental time-of-flight spectra. Relative branching ratios for all observed dissociation channels were also estimated based on all detected products.  相似文献   

10.
157 nm photodissociation of jet-cooled CH3OH and C2H5OH was studied using the high-n Rydberg atom time-of-flight (TOF) technique. TOF spectra of nascent H atom products were measured. Simulation of these spectra reveals three different atomic H loss processes: one from hydroxyl H elimination, one from methyl (ethyl) H elimination, and one from secondary dissociation of the methoxy (ethoxy) radical. The relative branching ratio indicates secondary dissociation of ethoxy is less important than that of methoxy. The average angular anisotropy parameter of methanol is negative (withβ≈-0.3), indicating the transition dipole moment is perpendicular to the C-O-H plane. The slightly more negative β value of ethanol (with β≈-0.4) implies that ethanol has a longer rotational period. These experimental results indicate that both systems undergo fast internal conversion to the 3s surface after it is excited to the 3px surface, and then dissociate on the 3s surface. The translational energy distribution of the CH3O+H products reveals extensive CH3 rocking or CH3 umbrella excitation in the CH3O radical. However the vibrational structures are not resolved in the C2H5O radical  相似文献   

11.
《Chemical physics letters》1987,139(6):585-588
A molecular beam of SO2 has been photodissociated at 193 nm to measure both the translational energy and angular distributions, from which it is concluded that the photodissociation is predissociative and that the vibrational population is peaked at ν″ = 2.  相似文献   

12.
Photodissociation of jet-cooled o-, m-, and p-ethyltoluene and p-fluoroethylbenzene at both 193 and 248 nm was studied separately using vacuum ultraviolet photoionization/multimass ion imaging techniques. Dissociation occurs exclusively through alkyl chain C-C bond cleavage. The measured photofragment translational energy distributions at 193 nm decrease monotonically with increasing translational energy. The distributions indicate that dissociation occurs from the ground electronic state after internal conversion. However, the photofragment translational energy distributions from o-, m-, and p-ethyltoluene obtained at 248 nm contain a slow and a fast component; the ratios between these components are 1:4, 1:1.3, and 1:6, respectively. On the other hand, only the slow component was observed from p-fluoroethylbenzene at 248 nm. The fast components are attributed to the dissociation from the triplet state after intersystem crossing, and the slow components result from the dissociation in the ground electronic state. Comparison with the photodissociation of benzene and toluene and ab initio calculation has been made.  相似文献   

13.
The TOF spectra of photofragment hydrogen atoms from the 193 nm photodissociation of amorphous ice at 90-140 K have been measured. The spectra consist of both a fast and a slow components that are characterized by average translational energies of 2k(B)T(trans)=0.39+/-0.04 eV (2300+/-200 K) and 0.02 eV (120+/-20 K), respectively. The incident laser power dependency of the hydrogen atom production suggests one-photon process. The electronic excitation energy of a branched cluster, (H(2)O)(6+1), has been theoretically calculated, where (H(2)O)(6+1) is a (H(2)O)(6) cyclic cluster attached by a water molecule with the hydrogen bond. The photoabsorption of this branched cluster is expected to appear at around 200 nm. The source of the hydrogen atoms is attributed to the photodissociation of the ice surface that is attached by water molecules with the hydrogen bond. Atmospheric implications are estimated for the photodissociation of the ice particles (Noctilucent clouds) at 190-230 nm in the region between 80 and 85 km altitude.  相似文献   

14.
Molecular beams of halogenated hydrocarbons containing chlorine and bromine atoms were photodissociated using an excimer laser at 193 nm. Molecules photodissociated were HCCBr, HCCCH2Br, HCCCH2Cl, CH3Cl, C2H5Cl and i-C3H7Cl. The time-of-flight distributions of the photofragments were measured in order to study the primary processes and the dissociation dynamics. Generalizations consistent with the data are that atomic products (RX → R + X) result from direct dissociation of the CX repulsive singlet state, molecular elimination (RX → R′ + HX) is a result of a crossover to the ground state and triplet states are involved in the photodissociation of alkyne compounds.  相似文献   

15.
Photodissociation and photoionization of 2,5-dihydroxybenzoic acid (25DHBA), at 193 and 355 nm were investigated separately in a molecular beam using multimass ion imaging techniques. Two channels competed after excitation by one 193 nm photon. One channel is dissociation from the repulsive excited state along O-H bond distance, resulting in H atom elimination from meta-OH functional group. The other channel is internal conversion to the ground state, followed by H(2)O elimination. Some of the fragments further proceeded to secondary dissociation. On the other hand, absorption of one 355 nm photon gave rise to H(2)O elimination channel on the ground state. Absorption of more than one 355 nm photon resulted in the three-body dissociation which also occurs on the ground state. Dissociation on the excited state does not play a role at 355 nm. The large concentration ratio (2×10(5)), between neutral fragments and cations produced from 355 nm multiphoton excitation indicates that internal conversion followed by dissociation, is the major channel for 355 nm multiphoton excitation. Multiphoton ionization is a minor channel. Multiphoton ionization of 25DHBA clusters only produces 25DHBA cations. Neither anion nor protonated 25DHBA cation were observed. It is very different from the ions produced from solid matrix-assisted laser desorption/ionization (MALDI), experiments. This suggests that protonated 25DHBA and negatively charged 25DHBA generated in MALDI experiments does not simply result from the ionization following proton transfer reactions or charge transfer reactions of the clusters in the gas phase.  相似文献   

16.
The ab initio/Rice-Ramsperger-Kassel-Marcus (RRKM) approach has been applied to investigate the photodissociation mechanism of azulene at 6.4 eV (the laser wavelength of 193 nm) upon absorption of one UV photon followed by internal conversion into the ground electronic state. Reaction pathways leading to various decomposition products have been mapped out at the G3(MP2,CC)//B3LYP level and then the RRKM and microcanonical variational transition state theories have been applied to compute rate constants for individual reaction steps. Relative product yields (branching ratios) for the dissociation products have been calculated using the steady-state approach. The results show that photoexcited azulene can readily isomerize to naphthalene and the major dissociation channel is elimination of an H-atom from naphthalene. The branching ratio of this channel decreases with an increase of the photon energy. Acetylene elimination is the second probable reaction channel and its branching ratio rises as the photon energy increases. The main C8H6 fragments at 193 nm are phenylacetylene and pentalene and the yield of the latter grows fast with the increasing excitation energy.  相似文献   

17.
《Chemical physics letters》1986,125(3):263-266
A molecular beam of C6F5Cl was photolyzed using an excimer laser at 193 nm. Measurements of time-of-flight distributions of the Cl photofragment revealed a prominent fluorination effect on the dissociation process, namely a large reduction of the kinetic energy of the fragments. The dominant process is dissociation after thermalization to the ground state.  相似文献   

18.
Photodissociation dynamics of HN 3 at 157.6 nm have been studied using the H-atom Rydberg tagging time-of-flight technique. Product translational energy distributions and angular distributions have been measured. From these distributions, three H-atom channels are observed. The vibrational structure in the fast-H channel could be assigned to a progression in the N 3 symmetric stretching mode (nu 100), together with a progression of the symmetric stretching mode with one quantum of bending motion (nu 110). The broad translational energy distribution of the slow-H channel is energetically consistent with the cyclic-N 3 formation process or a triple product dissociation channel. Photodissociation of DN 3 was also investigated using the same technique. Isotope effect on the product translational energy distribution has been observed, in which the slow H-atom is clearly more pronounced.  相似文献   

19.
The photolysis of (H(2)O)(n) nanoparticles of various mean sizes between 85 and 670 has been studied in a molecular beam experiment. At the dissociation wavelength 243 nm (5.10 eV), a two-photon absorption leads to H-atom production. The measured kinetic energy distributions of H-fragments exhibit a peak of slow fragments below 0.4 eV with maximum at approximately 0.05 eV, and a tail of faster fragments extending to 1.5 eV. The dependence on the cluster size suggests that the former fragments originate from the photodissociation of an H(2)O molecule in the cluster interior leading to the H-fragment caging and eventually generation of a hydronium H(3)O molecule. The photolysis of surface molecules yields the faster fragments. At 193 nm (6.42 eV) a single photon process leads to a small signal from molecules directly photolyzed on the cluster surface. The two photon processes at this wavelength may lead to cluster ionization competing with its photodissociation, as suggested by the lack of H-fragment signal increase. The experimental findings are complemented by theoretical calculations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号