首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourier-transform ion cyclotron resonance instrumentation is uniquely applicable to an unusual new ion chemistry, electron capture dissociation (ECD). This causes nonergodic dissociation of far larger molecules (42 kDa) than previously observed (<1 kDa), with the resulting unimolecular ion chemistry also unique because it involves radical site reactions for similarly larger ions. ECD is highly complementary to the well known energetic methods for multiply charged ion dissociation, providing much more extensive protein sequence information, including the direct identification of N- versus C-terminal fragment ions. Because ECD only excites the molecule near the cleavage site, accompanying rearrangements are minimized. Counterintuitively, cleavage of backbone covalent bonds of protein ions is favored over that of noncovalent bonds; larger (>10 kDa) ions give far more extensive ECD if they are first thermally activated. This high specificity for covalent bond cleavage also makes ECD promising for studying the secondary and tertiary structure of gaseous protein ions caused by noncovalent bonding.  相似文献   

2.
A novel set-up for Fourier transform ion cyclotron resonance mass spectrometry (FTICR) is reported for simultaneous infrared multiphoton dissociation (IRMPD) and electron-capture dissociation (ECD). An unmodified electron gun ensures complete, on-axis overlap between the electron and the photon beams. The instrumentation, design and implementation of this novel approach are described. In this configuration the IR beam is directed into the ICR cell using a pneumatically actuated mirror inserted into the ion-optical path. Concept validation was made using different combinations of IRMPD and ECD irradiation events on two standard peptides. The ability to perform efficient IRMPD, ECD and especially simultaneous IRMPD and ECD using lower irradiation times is demonstrated. The increase in primary sequence coverage, with the combined IRMPD and ECD set-up, also increases the confidence in peptide and protein assignments.  相似文献   

3.
An electron injection system based on an indirectly heated ring-shaped dispenser cathode has been developed and installed in a 7 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This new hardware design allows high-rate electron capture dissociation (ECD) to be carried out by a hollow electron beam coaxial with the ion cyclotron resonance (ICR) trap. Infrared multiphoton dissociation (IRMPD) can also be performed with an on-axis IR-laser beam passing through a hole at the centre of the dispenser cathode. Electron and photon irradiation times of the order of 100 ms are required for efficient ECD and IRMPD, respectively. As ECD and IRMPD generate fragments of different types (mostly c, z and b, y, respectively), complementary structural information that improves the characterization of peptides and proteins by FTICR mass spectrometry can be obtained. The developed technique enables the consecutive or simultaneous use of the ECD and IRMPD methods within a single FTICR experimental sequence and on the same ensemble of trapped ions in multistage tandem (MS/MS/MS or MS(n)) mass spectrometry. Flexible changing between ECD and IRMPD should present advantages for the analysis of protein digests separated by liquid chromatography prior to FTICRMS. Furthermore, ion activation by either electron or laser irradiation prior to, as well as after, dissociation by IRMPD or ECD increases the efficiency of ion fragmentation, including the w-type fragment ion formation, and improves sequencing of peptides with multiple disulfide bridges. The developed instrumental configuration is essential for combined ECD and IRMPD on FTICR mass spectrometers with limited access into the ICR trap.  相似文献   

4.
Two synthetic precursor peptides, H2N-CVGIW and H2N-LVMCCVGIW, involved in the quorum sensing of Lactobacillus plantarum WCFS1, were characterized by mass spectrometry (MS) with electrospray ionization and 7-T Fourier transform ion cyclotron resonance (ESI-FTICR) instrument. Cell-free bacterial supernatant solutions were analyzed by reversed-phase liquid chromatography with ESI-FTICR MS to verify the occurrence of both pentapeptide and nonapeptide in the bacterial broth. The structural characterization of both protonated peptides was performed by infrared multiphoton dissociation using a continuous CO2 laser source at a wavelength of 10.6 μm. As their fragmentation behavior cannot be directly derived from the primary peptide structure, all anomalous fragments were interpreted as neutral loss of amino acids from the interior of both peptides, i.e., loss of V, G, VG and M, MC, V, CC, from H2N-CVGIW and H2N-LVMCCVGIW, respectively. Mechanisms of this scrambling are proposed. FTICR MS provides accurate masses of all fragment ions with very low absolute mass errors (<1.6 ppm), which facilitated the reliable assignment of their elemental compositions. The resolving power was more than sufficient to resolve closely isobaric product ions with routine subparts per million mass accuracies. Only the occurrence of pentapeptide was found in the cell-free culture of L. plantarum, grown in Waymouth’s medium broth, with a low content of 5.2?±?2.6 μM by external calibration. Most of it was present as oxidized H2N-CVGIW, that is, the soluble disulfide pentapeptide with a level tenfold higher (i.e., 50?±?4 μM, n?=?3).
Figure
IRMPD of the precursor protonated peptide, [H2N-CVGIW +H]+ at m/z 577.3 and suggested pathway showing the formation of peptide macrocycle and its selective ring opening.  相似文献   

5.
6.
The use of electrospray ionisation Fourier-transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) for the analysis of dynamic combinatorial libraries (DCLs) of pseudo-peptide macrocyclic hydrazone oligomers is presented. The design of library building blocks results in mixtures of compounds with greater diversity than libraries generated by conventional combinatorial chemistry and so presents increased demands for analysis. The extended capabilities of the FTICR technique, specifically selective ion trapping, sensitivity, high resolution and mass accuracy over a broad mass range, are compatible with these increased demands and, most importantly, without the need for chromatography. Preliminary studies on the sequencing of cyclic oligomers and confirmation of the presence of sequence isomers are presented. These studies highlight the potential of FTICR-MS as a superior technique for the analysis of combinatorially generated compounds.  相似文献   

7.
The activation energy for the unimolecular dissociation of a non-covalent supramolecular complex between an Artificial Cationic Receptor A ([Gua-Val-Val-Val-Amide]+, in which Gua is guanidiniocarbonyl pyrrole) and an Anionic Tetrapeptide B ([N-Acetyl-Val-Val-Ile-Ala]-) has been determined by measurement of the dissociation rate constant as a function of infrared CO2 laser power density. Singly-charged quasimolecular [A + B + H]+ ions are isolated, stored in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, and irradiated by IR photons. The rate constant for dissociation of the non-covalent complex is determined at five different laser power densities. A plot of the natural logarithm of the first-order rate constant versus the natural logarithm of the laser power density yields a straight line, the slope of which provides an approximate measure of the activation energy (Ea(laser)) for dissociation. Ea(laser) is calculated by a relationship derived earlier by Dunbar and with a newly proposed equation by Paech et al. The results of the two approaches deliver significantly different activation energy values for the unimolecular dissociation of the non-covalent complex. We obtain EaI(laser) = 0.67 eV (Dunbar approximation) and EaII(laser) = 1.12 eV (Paech et al. approximation). Differences between the two approaches are discussed with respect to non-covalent complexes.  相似文献   

8.
We have developed a method for protein identification with peptide mass fingerprinting and sequence tagging using nano liquid chromatography (LC)/Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). To achieve greater sensitivity, a nanoelectrospray (nano-ES) needle packed with reversed-phase medium was used and connected to the nano-ES ion source of the FTICR mass spectrometer. To obtain peptide sequence tag information, infrared multiphoton dissociation (IRMPD) was carried out in nano-LC/FTICR-MS analysis. The analysis involves alternating nano-ES/FTICR-MS and nano-ES/IRMPD-FTICR-MS scans during a single LC run, which provides sets of parent and fragment ion masses of the proteolytic digest. The utility of this alternating-scan nano-LC/IRMPD-FTICR-MS approach was evaluated by using bovine serum albumin as a standard protein. We applied this approach to the protein identification of rat liver diacetyl-reducing enzyme. It was demonstrated that this enzyme was correctly identified as 3-alpha-hydroxysteroid dehydrogenase by the alternating-scan nano-LC/IRMPD-FTICR-MS approach with accurate peptide mass fingerprinting and peptide sequence tagging.  相似文献   

9.
10.

Peptide molecular ion species up to m/z 3055 introduced into a Fourier-transform mass spectrometer can be made to undergo extensive fragmentation by electrically floating the ion cell. The proportion of ions dissociated increases with increasing voltage, with 48 eV producing the highest absolute abundance of fragment ions above m/z 200. At this energy, spectra closely resemble those from photodissociation at 193 nm, indicating an internal energy deposition of 6–7 eV; change of product abundances with kinetic energy resembles a conventional breakdown curve. The precursor ions apparently are electrostatically attracted to strike screen wires across the ion cell entrance, producing daughter ions of low kinetic energy.

  相似文献   

11.
Exceptionally high mass resolving power and mass accuracy combined with tandem mass spectrometry (MSn) capability make Fourier transform ion cyclotron resonance mass spectrometry a powerful tool for structure verification and determination of biological macromolecules. By means of local internal calibration and electron mass correction, mass accuracy better than ±0.5 ppm was achieved for two oligosaccharide antibiotics, Saccharomicins A and B, consistent with the proposed elemental compositions based upon NMR data. High resolution and high mass accuracy MS/MS data were obtained for both oligosaccharides by use of infrared multiphoton dissociation (IRMPD) with a 40 W continuous-wave CO2 laser. The spectra were charge-state deconvolved by the “Z-score” algorithm to yield much simpler mass-only spectra. Sequences of 15 sugar residues could be confirmed from the charge state deconvolved accurate mass MS/MS spectra for Saccharomicins A and B, even without use of traditional prior permethylation. A fragment corresponding to an internal sugar loss rearrangement was observed by IRMPD and studied by collision activated dissociation MS4.  相似文献   

12.
Fourier transform ion cyclotron resonance (FT-ICR) detection was tested for resonanceenhanced multiphoton ionization (REMPI) spectroscopy. The (2+1) REMPI spectra of acetaldehyde were obtained in the wavelength range 364–354 nm via a two-photon resonant 3sn Rydberg transition. The space-charge effects on the REMPI spectra were examined in the vicinity of the 0 0 0 transition. The trapping efficiency measurement shows that all the ions produced from REMPI dissociation processes are arrested in the ion cyclotron resonance cell even in the presence of space-charge interactions. Axial kinetic energy release distributions of ions were extracted from the trapping efficiency data obtained under a new space-charge-free condition. FT-ICR peak heights were measured as a function of pressure at different laser powers, magnetic field strengths, and ion excitation methods to test for the detection linearity. The FT-ICR detection responds linearly to the number of ions in a low pressure limit. The product branching ratio was measured by using various ion excitation methods and was compared with the previous quadrupole mass spectrometric study. FT-ICR detection yields the mass-selected REMPI spectra and the product branching ratio in the absence of kinetic shifts.  相似文献   

13.
Liquid separation methods in combination with electrospray mass spectrometry as well as the recently introduced fragmentation method electron capture dissociation (ECD) have become powerful tools in proteomics research. This paper presents the results of the first successful attempts to combine liquid chromatography (LC) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with ECD in the analysis of a mixture of standard peptides and of a bovine serum albumin tryptic digest. A novel electron injection system provided conditions for ECD sufficient to yield extensive sequence information for the most abundant peptides in the mixtures on the time-scale of the chromatographic separation. The results suggest that LC/ECD-FTICRMS can be employed in the characterization of peptides in enzymatic digests of proteins or protein mixtures and identify and localize posttranslational modifications.  相似文献   

14.
The fragmentation of peptides and oligosaccharides in the gas phase was investigated by means of electrospray ionization Fourier transform ion cyclotron resonance (FTICR) mass spectrometry coupled with dissociation by a laser-cleavage infrared multiphoton dissociation (IRMPD) technique. In this technique, an IR free-electron laser is used as a tunable source of IR radiation to cause cleavage of the ionized samples introduced into the FTICR cell. The gas-phase IRMPD spectra of protonated peptides (substance P and angiotensin II) and two sodiated oligosaccharides (sialyl Lewis X and lacto-N-fucopentaose III) were obtained over the IR scan range of 5.7-9.5 microm. In the IRMPD spectra for the peptide, fragment ions are observed as y/b-type fragment ions in the range 5.7-7.5 microm, corresponding to cleavage of the backbone of the parent amino acid sequence, whereas the spectra of the oligosaccharides have major peaks in the range 8.4-9.5 microm, corresponding to photoproducts of the B/Y type.  相似文献   

15.
Successful electron capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) applications to peptide and protein structural analysis have been enabled by constant progress in implementation of improved electron injection techniques. The rate of ECD product ion formation has been increased to match the liquid chromatography and capillary electrophoresis timescales, and ECD has been combined with infrared multiphoton dissociation in a single experimental configuration to provide simultaneous irradiation, fast switching between the two techniques, and good spatial overlap between ion, photon, and electron beams. Here we begin by describing advantages and disadvantages of the various existing electron injection techniques for ECD in FT-ICR MS. We next compare multiple-pass and single-pass ECD to provide better understanding of ECD efficiency at low and high negative cathode potentials. We introduce compressed hollow electron beam injection to optimize the overlap of ion, photon, and electron beams in the ICR ion trap. Finally, to overcome significant outgassing during operation of a powerful thermal cathode, we introduce nonthermal electron emitter-based electron injection. We describe the first results obtained with cold cathode ECD, and demonstrate a general way to obtain low-energy electrons in FT-ICR MS by use of multiple-pass ECD.  相似文献   

16.
Resorcarenes have become a popular subject of study in the field of supramolecular chemistry. In this work the formation of host-guest complexes between a synthetic macrocyclic host, tetraethylresorcarene, and various eligible planar guests, was studied by mass spectrometric methods. The size and nature of the guest ion strongly influenced the complex formation. Collision-induced dissociation experiments revealed the fragmentation patterns of the resorcarene skeleton and the differences in fragmentation induced by the guest ions.  相似文献   

17.
In this study, the fragmentation of gas-phase protonated Angiotensin II is investigated using electrospray ionization (ESI), Fourier-transform ion cyclotron resonance (FT-ICR), and mass spectrometry (MS) with a laser cleavage infrared multiphoton dissociation (IRMPD) technique. The experimental results show that the spectra peaks for the photoproducts are y2/b6- and y7-type ions, corresponding to the cleavage of His-Pro and Asp-Arg in the parent amino acid sequence. The fragmentation of the peptide under collision-free vacuum conditions is modeled using molecular dynamics simulations (MD). The binding energy for the peptide bonds (C'-N bond) of Angiotensin II is estimated from ab initio calculations. The calculations are directed at predicting experimental measurements of the product ions from the photodissociation of the peptide. The product distributions simulated by the MD dissociation trajectories include predominantly y7/b1 and y2/b6 pair ions.  相似文献   

18.
The analytical utility of the electron capture dissociation (ECD) technique, developed by McLafferty and co-workers, has substantially improved peptide and protein characterization using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The limitations of the first ECD implementations on commercial instruments were eliminated by the employment of low-energy electron-injection systems based on indirectly heated dispenser cathodes. In particular, the ECD rate and reliability were greatly increased, enabling the combination of ECD/FTICR-MS with on-line liquid separation techniques. Further technique development allowed the combination of two rapid fragmentation techniques, high-rate ECD and infrared multiphoton dissociation (IRMPD), in a single experimental configuration. Simultaneous and consecutive irradiations of trapped ions with electrons and photons extended the possibilities for ion activation/dissociation and led to improved peptide and protein characterization. The application of high-rate ECD/FTICR-MS has demonstrated its power and unique capabilities in top-down sequencing of peptides and proteins, including characterization of post-translational modifications, improved sequencing of peptides with multiple disulfide bridges and secondary fragmentation (w-ion formation). Analysis of peptide mixtures has been accomplished using high-rate ECD in bottom-up mass spectrometry based on mixture separation by liquid chromatography and capillary electrophoresis. This paper summarizes the current impact of high-rate ECD/FTICR-MS for top-down and bottom-up mass spectrometry of peptides and proteins.  相似文献   

19.
The gas-phase structures of protonated (deoxy)nucleoside-5'- and 3'-monophosphates (mononucleotides) have been examined by the use of gas-phase hydrogen/deuterium (H/D) exchange and high-field Fourier-transform ion cyclotron resonance mass spectrometry. These nucleotides were reacted with three different deuterating reagents: ND3, D2O, and D2S, of which ND3 was the most effective. All mononucleotides fully exchanged their labile hydrogen for deuterium with ND3 with the exception of deoxycytidine-3'-monophosphate, deoxyadenosine-5'-monophosphate, adenosine-5'-monophosphate, and adenosine-3'-monophosphate. Semiempirical calculations demonstrate the presence of hydrogen bonding upon protonation of the purine mononucleotides which may lead to incomplete H/D exchange. H/D exchange rates differed between the deoxymononucleotides and the ribomononucleotides, suggesting that the 2'-OH group plays an important role in the exchange process. Reactions of nucleosides and mononucleotides with D2O demonstrate that a structure-specific long-lived ion-molecule complex between D2O and the mononucleotide involving the phosphate group is necessary for exchange to overcome the high-energy activation barrier. In contrast, a structure-specific long-lived ion-molecule complex between the mononucleotides and ND3 is not required for exchange to occur.  相似文献   

20.
A hybrid linear ion-trap Fourier-transform ion cyclotron resonance mass spectrometer was used for top-down characterization of the abundant human salivary cystatins, including S, S1, S2, SA, SN, C, and D, using collisionally activated dissociation (CAD) after chromatographic purification of the native, disulfide intact proteins. Post-translational modifications and protein sequence polymorphisms arising from single nucleotide polymorphisms (SNPs) were assigned from precursor and product ion masses at a tolerance of 10 ppm, allowing confident identification of individual intact mass tags. Cystatins S, S1, S2, SA, and SN were cleaved of a N-terminal 20 amino acid signal peptide and cystatin C a 26-residue peptide, to yield a generally conserved N-terminus. In contrast, cystatin D isoforms with 24 and 28 amino acid residue N-terminal truncations were found such that their N-termini were not conserved. Cystatin S1 was phosphorylated at Ser3, while S2 was phosphorylated at Ser1 and Ser3, in agreement with previous work. Both cystatin D isoforms carried the polymorphism C46R (SNP: rs1799841). The 14,328 Da isoform of cystatin SN previously assigned with polymorphism P31L due to a SNP (rs2070856) was found only in whole saliva. Parotid secretions contained no detectable cystatins while whole saliva largely mirrored the contents of submandibular/sublingual (SMSL) secretions. With fully characterized cystatin intact mass tags it will now be possible to examine the correlation between the abundance of these molecules and human health and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号