首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We report the direct observation of quantum coupling in individual quantum dot molecules and its manipulation using static electric fields. A pronounced anticrossing of different excitonic transitions is observed as the electric field is tuned. A comparison of our experimental results with theory shows that the observed anticrossing occurs between excitons with predominant spatially direct and indirect character and reveals a field driven transition of the nature of the molecular ground state exciton wave function. Finally, the interdot quantum coupling strength is deduced optically and its dependence on the interdot separation is calculated.  相似文献   

2.
We study the capacitance spectra of artificial molecules consisting of two and three coupled quantum dots from an extended Hubbard Hamiltonian model that takes into account quantum confinement, intra- and inter-dot Coulomb interaction and tunneling coupling between all single particle states in nearest neighbor dots. We find that, for weak coupling, the interdot Coulomb interaction dominates the formation of a collective molecular state. We also calculate the effects of correlations on the tunneling probability through the evaluation of the spectral weights, and corroborate the importance of selection rules for understanding experimental conductance spectra.  相似文献   

3.
吴绍全  陈佳峰  赵国平 《物理学报》2012,61(8):87203-087203
从理论上研究了串型耦合双量子点之间库仑作用对其近藤共振的影响. 采用非平衡态格林函数和奴役玻色子平均场近似方法求解了系统的哈密顿量; 计算了系统电子的态密度、透射率、占居数和近藤温度随双量子点之间库仑作用能的变化, 同时也计算了电极处于极化时双量子点之间库仑作用能对系统电子态密度的影响. 结果表明,双量子点之间库仑作用能够极大地影响系统的基态物理性质. 同时还对相关的物理问题进行了讨论.  相似文献   

4.
Using an equation-of-motion technique, we theoretically study the Fano--Kondo effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. We calculate the density of states in this system with both parallel and antiparallel lead-polarization alignments, and our results reveal that the interdot coupling, the spin-polarized strength and the energy level of the side coupled quantum dot greatly influence the density of states of the central quantum dot. This system is a possible candidate for spin valve transistors and may have potential applications in the spintronics.  相似文献   

5.
We theoretically study the spin pump effects of the rotating magnetic field on the spin current through two coupled quantum dots. Owing to the interdot coupling, two molecular states with different bands can be formed, resulting asymmetric spin current peaks. The possibility of manipulating the spin current is explored by tuning the strength, the frequency, and the direction of the rotating magnetic field. The number and location of the spin current peaks can be controlled by making use of various tunings. Furthermore, the normal 2π period of the spin current with respect to the magnetic flux can be destroyed by the interdot coupling.  相似文献   

6.
We have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole-spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where a conditional exciton energy shift in one dot identifies the charging state of the coupled partner.  相似文献   

7.
Phonon-induced spin relaxation in coupled lateral quantum dots in the presence of spin-orbit coupling is calculated. The calculation for single dots is consistent with experiment. Spin relaxation in double dots at useful interdot couplings is dominated by spin-hot spots that are strongly anisotropic. Spin-hot spots are ineffective for a diagonal crystallographic orientation of the dots with a transverse in-plane field. This geometry is proposed for spin-based quantum information processing.  相似文献   

8.
We report low-temperature conductance measurements in the Coulomb blockade regime on two nominally identical tunnel-coupled quantum dots in parallel defined electrostatically in the two-dimensional electron gas of a GaAs/AlGaAs heterostructure. At low interdot tunnel coupling we find that the conductance measured through one dot is sensitive to the charge state of the neighboring dot. At larger interdot coupling the conductance data reflect the role of quantum charge fluctuations between the dots. As the interdot conductance approaches 2e2/h, the coupled dots behave as a single large dot.  相似文献   

9.
Adiabatic passage schemes in coupled semiconductor quantum dots are discussed. For optical control, a doped double-dot molecule is proposed as a qubit realization. The quantum information is encoded in the carrier spin, and the flexibility of the molecular structure allows to map the spin degrees of freedom onto the orbital ones and vice versa, which opens the possibility for high-finesse quantum gates by means of stimulated Raman adiabatic passage. For tunnel-coupled dots, adiabatic passage of two correlated electrons in three coupled quantum dots is shown to provide a robust and controlled way of distilling, transporting and detecting spin entanglement, as well as of measuring the rate of spin disentanglement. Employing tunable interdot coupling the scheme creates, from an unentangled two-electron state, a superposition of spatially separated singlet and triplet states, which can be discriminated through a single measurement. Finally, we discuss phonon-assisted dephasing in quantum dots, and present control strategies to suppress such genuine solid-state decoherence losses.  相似文献   

10.
We present results of correlated pseudopotential calculations of an exciton in a pair of vertically stacked InGaAs/GaAs dots. Competing effects of strain, geometry, and band mixing lead to many unexpected features missing in contemporary models. The first four excitonic states are all optically active at small interdot separation, due to the broken symmetry of the single-particle states. We quantify the degree of entanglement of the exciton wave functions and show its sensitivity to interdot separation. We suggest ways to spectroscopically identify and maximize the entanglement of exciton states.  相似文献   

11.
During the recent years semiconductor nanostructures have attracted considerable interest with respect to potential applications in quantum information processing. In particular, quantum dot molecules have been suggested to provide the building block of a quantum computer: forming quantum gates due to coherent coupling of two dots. The characteristic dependence of the splitting of ‘bonding’ and ‘anti-bonding’ states suggests coherent coupling of two InAs/GaAs quantum dots. Anti-crossings in the fine structure of excitons due to mixing of optically bright and dark states have been observed in Faraday configuration. In Voigt configuration the diamagnetic shift of the quantum dot molecule is enhanced compared to a single quantum dot. These findings altogether demonstrate the coherent coupling of exciton states in quantum dot molecules.  相似文献   

12.
丁国辉  叶飞 《中国物理快报》2007,24(10):2926-2929
We investigate electronic transport through a parallel double quantum dot (DQD) system with strong on-site Coulomb interaction, as well as the interdot tunnelling. By applying numerical renormalization group method, the ground state of the system and the transmission probability at zero temperature are obtained. For a system of quantum dots with degenerate energy levels and small interdot tunnel coupling, the spin correlations between the DQDs is ferromagnetic, and the ground state of the system is a spin-1 triplet state. The linear conductance will reach the unitary limit (2e^2/h) due to the Kondo effect at low temperature. As the interdot tunnel coupling increases, there is a quantum phase transition from ferromagnetic to anti-ferromagnetic spin correlation in DQDs and the linear conductance is strongly suppressed.  相似文献   

13.
Fabrication of double quantum dots by combining afm and e-beam lithography   总被引:1,自引:0,他引:1  
In recent years several attempts have been made to fabricate coupled quantum dots as a crucial element of quantum computing devices. One important challenge is to achieve a reliable control of the interdot tunneling. For this purpose we have combined direct nanolithography by local anodic oxidation (LAO) with standard electron-beam lithography. LAO is used to produce parallel double quantum dots. Additional metallic split gates are responsible for the control of the interdot coupling. We describe our fabrication scheme and demonstrate the function in low-temperature transport measurements.  相似文献   

14.
We study the thermoelectric transport through a double-quantum-dot system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green’s function in the linear response regime.It is found that the thermoelectric coefficients are strongly dependent on the splitting of the interdot coupling,the relative magnetic configurations,and the spin polarization of leads.In particular,the thermoelectric efficiency can reach a considerable value in the parallel configuration when the effective interdot coupling and the tunnel coupling between the quantum dots and the leads for the spin-down electrons are small.Moreover,the thermoelectric efficiency increases with the intradot Coulomb interaction increasing and can reach very high values at appropriate temperatures.In the presence of the magnetic field,the spin accumulation in the leads strongly suppresses the thermoelectric efficiency,and a pure spin thermopower can be obtained.  相似文献   

15.
Strong electron and spin correlations in a double quantum dot (DQD) can give rise to different quantum states. We observe a continuous transition from a Kondo state exhibiting a single-peak Kondo resonance to another exhibiting a double peak by increasing the interdot coupling (t) in a parallel-coupled DQD. The transition into the double-peak state provides evidence for spin entanglement between the excess electrons on each dot. Toward the transition, the peak splitting merges and becomes substantially smaller than t because of strong Coulomb effects. Our device tunability bodes well for future quantum computation applications.  相似文献   

16.
When a quantum dot in the Kondo regime couples to two leads (the conduction electron reservoirs) indirectly through intermediate electron levels, two features are noteworthy concerning the Kondo effect. First, the Kondo peak in the spectrum of local density of states becomes narrower as the coupling to the leads is much larger than the interdot coupling, which is just opposite to the case of direct dot-lead coupling. Secondly, the increment of the coupling to the leads and the deviation of the intermediate levels from the Fermi level can effectively facilitate the formation of the negative differential conductance.  相似文献   

17.
Using an equation-of-motion technique,we theoretically study the Kondo-Fano effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian.We calculate the density of states in this system by solving Green function.Our results reveal that the density of states show some noticeable characteristics not only depending upon the interdot coupling t ab,the energy level ε d1 of the side coupled quantum dot QD b,and the relative angle θ of magnetic moment M,but also the asymmetry parameter α in ferromagnetic leads and so on.All these parameters greatly influence the density of states of the central quantum dot QD a.This system is a possible candidate for spin valve transistors and may have potential applications in the spintronics.  相似文献   

18.
Hui Pan  Su-Qing Duan 《Physics letters. A》2009,373(14):1294-1300
AC field-controlled Andreev tunneling through two serially-coupled quantum dots are investigated theoretically by using the nonequilibrium Green's function method. The photon-assisted Andreev tunneling is studied in detail. It is found that the average current depends distinctly on the interdot coupling. In the weak interdot coupling case, the average current versus the gate voltage exhibit negative peaks on the left-hand side and positive peaks on the right-hand side of the Fermi level. However, in the strong interdot coupling case, the current exhibit both negative and positive peaks on each side of the Fermi level. Furthermore, the system can function as an electron pump capable of transporting electrons through the resonant photon-assisted Andreev tunneling.  相似文献   

19.
欧阳仕华  林志恒  游建强 《中国物理 B》2010,19(5):50519-050519
We study shot noise in tunneling current through a double quantum dot connected to two electric leads.We derive two master equations in the occupation-state basis and the eigenstate basis to describe the electron dynamics.The approach based on the occupation-state basis,despite being widely used in many previous studies,is valid only when the interdot coupling strength is much smaller than the energy difference between the two dots.In contrast,the calculations using the eigenstate basis are valid for an arbitrary interdot coupling.Using realistic model parameters,we demonstrate that the predicted currents and shot-noise properties from the two approaches are significantly different when the interdot coupling is not small.Furthermore,properties of the shot noise predicted using the eigenstate basis successfully reproduce qualitative features found in a recent experiment.  相似文献   

20.
考虑半导体量子点间隧穿耦合效应,研究非对称半导体三量子点分子中的弱探测光的传播特性。线性情况下,由于点间隧穿耦合和外部控制光的协同调控,探测光的吸收特性将出现共振吸收、隧穿诱导透明单窗口、隧穿诱导透明双窗口及隧穿诱导透明三窗口的转变。此外,从反常色散到正常色散的开关效应可通过改变隧穿强度及光学控制场强度来实现。对于非线性情况,发现孤子的振幅随着点间隧穿耦合系数增大呈先增大再减小随即再次增大并减小的波动变化趋势且出现最大振幅及其对应的点间隧穿耦合强度随着外部控制光场的增大而减小。此外,发现孤子的群速度随着耦合强度的增加呈逐渐减小的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号