首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 291 毫秒
1.
An analytic MHD equilibrium for an axisymmetric torodial plasma with toroidal and toroidal flow is obtained in the limit of small ratio of poloidal to toroidal magnetic field and small beta. For a critical value of the poloidal velocity a limitation of the domain of validity of the solution appears.  相似文献   

2.
陈龙溪  雷文庆  吴斌 《计算物理》2013,30(6):902-908
数值研究平衡电流位形对电阻壁模式稳定性的影响.研究发现,对于不同的电流位形,当等离子体边缘处安全因子一定时,最不稳定的电阻壁模的环向模数和极向模数相同.在同一壁位置下,非均匀电流位形驱动的电阻壁模的线性增长率比均匀电流位驱动的电阻壁模的线性增长率大.等离子体速度流在不同的初始电流位形下对电阻壁模稳定性的影响不同.由于磁力线在壁上的挤压,经过线性演化后,电阻壁模进入非线性演化并达到饱和状态,非均匀电流位形下的扰动磁能比均匀电流位形下的扰动磁能饱和度低.  相似文献   

3.
Effects of externally imposed and self-generated poloidal flows on turbulent transport in the edge region of a tokamak are investigated using 3D nonlinear global simulations of resistive pressure-gradient-driven turbulence. Transport reduction is found to be due to synergetic changes in the fluctuation amplitude and in the dephasing of the fluctuations. A scaling of the fluctuation level and turbulent diffusivity with E x B flow shear strength is deduced from these simulations. These scalings agree with recent experimental observations on edge biasing as well as with analytical models.  相似文献   

4.
In magnetic configurations with two or three q=1 (with q being the safety factor) resonant surfaces in a tokamak plasma, resistive magnetohydrodynamic modes with poloidal mode numbers m much larger than 1 are found to be linearly unstable. It is found that these high-m double or triple tearing modes significantly enhance through nonlinear interactions the growth of the m=1 mode. This may account for the sudden onset of the internal resistive kink, i.e., the fast sawtooth trigger. Based on the subsequent reconnection dynamics that can proceed without formation of the m=1 islands, it is proposed that high-m triple tearing modes are a possible mechanism for precursor-free partial collapses during sawtooth oscillations.  相似文献   

5.
In the ASDEX Upgrade tokamak, high poloidal beta up to beta(pol) = 3 at the Greenwald density with H-mode confinement has been reached. Because of the high beta, the plasma current is driven almost fully noninductively, consisting of 51% bootstrap and 43% neutral beam driven current. To reach these conditions the discharge is operated at low plasma current ( I(P) = 400 kA) and high neutral beam heating power ( P(NBI) = 10 MW). The discharge combines an edge (H mode) and internal transport barrier at high densities without confinement-limiting MHD activities. The extrapolation to higher plasma currents may offer a promising way for an advanced scenario based fusion reactor.  相似文献   

6.
In the frame of the ITER fusion program, large Cable In Conduit Cables (CICC) made with NbTi superconductors are foreseen for the poloidal field system. These coils are pulsed and so subjected to fast variations in magnetic field. Superconductors have then to be designed in order to reduce AC losses to an acceptable level. A solution could be to insert a copper nickel resistive barrier in the copper stabilizer surrounding the filamentary area of the composite. The purpose of this barrier is to reduce interstrand coupling currents. In order to predict the effect of this barrier on AC losses, a modeling of a 36 strands CICC has been realized. According to this code, the ability of the resistive barrier to reduce coupling currents is dependent on its location. For this study, three CICC with three barrier locations, from the inner to the outer diameter of the copper crown stabilizer, have been produced. AC losses have been measured and compared to our numerical model.  相似文献   

7.
The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration.  相似文献   

8.
A new operational scenario of advanced tokamak formation was demonstrated in the JT-60U tokamak. This was accomplished by electron cyclotron and lower hybrid waves, neutral beam injection, and the loop voltage supplied by the vertical field and shaping coils. The Ohmic heating (OH) solenoid was not used but a small inboard coil (part of the shaping coil), providing less than 20% of total poloidal flux, was used. The plasma thus obtained had both internal and edge transport barriers, with an energy confinement time of 1.6 times H-mode scaling, a poloidal beta of 3.6, and a normalized beta of 1.6, and a large bootstrap current fraction (>90%). This result opens up a possibility to reduce, and eventually eliminate, the OH solenoid from a tokamak reactor, which will greatly improve its economic competitiveness.  相似文献   

9.
A semi-implicit algorithm for the solution of the nonlinear, three-dimensional, resistive MHD equations in cylindrical geometry is presented. The specific model assumes uniform density and pressure, although this is not a restriction of the method. The spatial approximation employs finite differences in the radial coordinate, and the pseudo-spectral algorithm in the periodic poloidal and axial coordinates. A leapfrog algorithm is used to advance wave-like terms; advective terms are treated with a simple predictor-corrector method. The semi-implicit term is introduced as a simple modification to the momentum equation. Dissipation is treated implicitly. The resulting algorithm is unconditionally stable with respect to normal modes. A general discussion of the semi-implicit method is given, and specific forms of the semi-implicit operator are compared in physically relevant test cases. Long-time simulations are presented.  相似文献   

10.
The stability analysis of the n=1 resistive wall mode is carried out for a simplified model of collisionless tokamak plasma. It is found that the trapped particle compressibility and the resonance between the mode and the precession drift frequency lead to a significant improvement of the beta stability limits. It is shown that, within the frame of the simplified model, the resistive wall mode can be fully suppressed and the plasma can be stable up to the wall beta limits for a slow plasma rotation.  相似文献   

11.
HL—1装置的反磁磁通测量   总被引:1,自引:1,他引:0  
本文简要地叙述了HL-1装置上等离子体反磁磁通测量,由此推算β_p、平均能量、能量约束时间的原理和方法,给出了典型放电的测量和计算结果。  相似文献   

12.
A plasma toroid is rotated toroidally to supersonic speeds by external means. The input power maintains the rotation and also heats the plasma. The thermoelectric effect from the resulting temperature gradient creates and maintains a poloidal magnetic field against resistive decay, confining the plasma in steady state. The shear in the rotation keeps the plasma stable to MHD kinks and interchanges. Such a system has two novel advantages as a fusion device: there are no strong electromagnets needed to create the confining magnetic field, and there is effectively no limit on the field strength and, hence, no limit on the plasma pressure contained. The system has to be of a large aspect ratio, to minimize centrifugal effects, and a weak, external vertical magnetic field is needed to balance the radial hoop force.  相似文献   

13.
A low-frequency, spectrally broad (Deltaf approximately 10 kHz) poloidal flow structure that peaks near zero frequency is observed in time-resolved measurements of the turbulence velocity field in the core region (r/a approximately 0.6-0.9) of DIII-D tokamak plasmas. These flows exhibit a long poloidal wavelength (low m) and a short radial coherence length comparable to the ambient turbulence decorrelation length. Characteristics of these observed poloidal flows are consistent with the theoretically predicted residual or zero-mean-frequency zonal flows.  相似文献   

14.
结合HL-1装置的条件,采用撕裂模的准线性理论,研究了托克马克中导体壁对m=2/n=1扰动模的稳定作用。着重研究了导体壁位置,等离子体电流分布,等离子体位形对这种稳定效应的影响。结果表明,共振面的位置与壁的稳定作用有密切关系,存q_a接近于2的位形中,m=2的撕裂模扰动可以被靠近等离子体的导体壁完全抑制。导体壁的稳定效应与等离子体电流分布相联系,在一些现实的电流分布中,只要适当地压低等离子体边界区的电流密度,壁的稳定效应会更加显现出来。  相似文献   

15.
朱思铮 《计算物理》1993,10(1):69-75
本文描述了用外部磁测量信号,和等离子体总电流,以及角向βp的测量值,重建托卡马克中等高子体半衡的方法。对圆截面、非圆截面和偏滤器位形;对不同的电流分布分别作了重建计算。数值研究了测量误差、探针布置对重建结果的影响。  相似文献   

16.
A stability analysis for the resistive wall mode is studied in the presence of trapped energetic particles (EPs). When the EPs' beta exceeds a critical value, a fishbonelike bursting mode (FLM) with an external kink eigenstructure can exist. This offers the first analytic interpretation of the experimental observations [Phys. Rev. Lett. 103, 045001 (2009)]. The mode-particle resonances for the FLM and the q=1 fishbone occur in different regimes of the precession frequency of EPs. In certain ranges of the plasma rotation speed and the EPs' beta, a mode conversion can occur between the resistive wall mode and FLM.  相似文献   

17.
基于实时Linux的极向场电源主控制系统的设计   总被引:1,自引:0,他引:1  
为了满足极向场电源控制系统严苛的实时响应的要求,选择实时Linux系统作为系统平台,采用一个开放源代码的、基于C/C++的Eclipse可扩展的开发平台作为开发工具,完成极向场电源主控制系统的设计,实现了在一个控制周期内(1ms)对极向场电源系统的12套本地控制器的实时通信和实时控制。对极向场电源主控制系统的高速通信和实时控制、稳定可靠等关键问题给出了可行的实践性的解决方法。经实验测试,该设计运行稳定,能满足极向场电源控制系统的实时需求。  相似文献   

18.
结合HL-2A 装置的参数,在电子回旋共振加热(ECRH)离(在)轴加热的情况下,研究高能量捕获电子驱动的鱼骨模不稳定性。数值结果表明,高能量电子极向比压βh 大于某一个比压阈值βh,crit 时,鱼骨模会被高能量电子激发,其频率随高能量电子极向比压的增大而缓慢增加且与高能量电子的环向进动频率一致;比压阈值βh,crit 随着高能量电子密度剖面峰化程度的增加而减小,但当密度剖面增大到一定值时比压阈值βh,crit 趋近于一个常数。此外,还分析了箍缩角和扰动能对鱼骨模实频和增长率的影响。发现在箍缩角α0 =1附近增长率有一极小值,表明高能量勉强通行电子对鱼骨模具有稳定作用;而扰动能 δWˆc增大时,鱼骨模表现出实频变大而增长率变小的特征,这表明了本底等离子体对鱼骨模有一定的稳定效果。  相似文献   

19.
A dynamo model of the solar cycle suggesting a relatively new mechanism for generation of poloidal magnetic fields is studied. This model considers the meridian motion in which the material rises at the equator and sinks at the poles and allows the magnetic fields from the solar surface to be transferred to the generation layer at the base of the convective zone. In addition to the surface stream of material and large-scale magnetic field from the equator to the poles, we assume the looping of a new poloidal magnetic field near the poles. At the base of the convective zone, thin meridian streams transfer the end of that loop from the poles to the equator. The loop consists of poloidal fields on the top and at the bottom of the stream near the base of the convective zone. Thus, new poloidal magnetic fields, which are opposite in sign to the poloidal fields of the current solar cycle, are generated in the depth of the convective zone. New poloidal fields on the top of the stream become the fields of a new 11-year cycle. At the bottom of the meridian stream, the direction of the poloidal magnetic field is the same as the direction of the poloidal field of the current solar cycle. The lifetime of the deep-seated poloidal field is much longer than 11 years, due to the motion of the material which keeps it from rising too rapidly. The meridian loop of the subsequent solar cycle has a poloidal field opposite in direction to the poloidal field at the base of the convective zone. This counterbalances the poloidal field at the bottom of the meridian stream. The numerical model calculates the magnetic fields in the surface and bottom layers of the convective zone.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 39, No. 10, pp. 1187–1193, October, 1996.This work was supported in part by the Russian Foundation for Fundamental Research under Grant No. 93-0217133 and the International Science Foundation under ISF Grant No. JB5100.  相似文献   

20.
The experimental advanced superconducting tokamak (EAST) is the first full superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. Its poloidal coils are relatively far from the plasma due to the necessary thermal isolation from the superconducting magnets, which leads to relatively weaker coupling between plasma and poloidal field. This may cause more di?culties in controlling the vertical instability by using the poloidal coils. The measured growth rates of vertical stability are compared with theoretical calculations, based on a rigid plasma model. Poloidal beta and internal inductance are varied to investigate their effects on the stability margin by changing the values of parameters αn and γn(Howl et al 1992 Phys. Fluids B 4 1724), with plasma shape fixed to be a configuration with k = 1.9 and δ = 0.5. A number of ways of studying the stability margin are investigated. Among them, changing the values of parameters κ and li is shown to be the most effective way to increase the stability margin. Finally, a guideline of stability margin Ms(κ,li,A) to a new discharge scenario showing whether plasmas can be stabilized is also presented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号