首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We report specific heat measurements of the heavy fermion superconductor CeCoIn5 in the vicinity of the superconducting critical field H(c2), with magnetic fields in the [110], [100], and [001] directions, and at temperatures down to 50 mK. The superconducting phase transition changes from second to first order for fields above 10 T for H parallel [110] and H parallel [100]. In the same range of magnetic fields, we observe a second specific heat anomaly within the superconducting state. We interpret this anomaly as a signature of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) inhomogeneous superconducting state. We obtain similar results for H parallel [001], with the FFLO state occupying a smaller part of the phase diagram.  相似文献   

2.
We present specific heat and thermal conductivity of the heavy fermion superconductor CeCoIn5 in the vicinity of the superconducting critical fieldH c2, measured with magnetic field in the plane of this quasi-2D compound and at temperatures down to 50 mK. The superconducting phase diagram and the first order nature of the superconducting phase transition at high fields close to a critical fieldH c2 indicate the importance of the Pauli limiting effect in CeCoIn5. In the same range of magnetic field we observe a second specific heat anomaly within the superconducting state, and interpret it as a signature of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) inhomogeneous superconducting state. In addition, the thermal conductivity data as a function of field display a kink at a fieldH k below the superconducting critical field, which closely coincides with the low temperature anomaly in specific heat tentatively identified with the appearance of the FFLO superconducting state. The enhancement of thermal conductivity within the FFLO state calls for further theoretical investigations of the real space structure of the order parameter (and in particular, the structure of vortices) and of the thermal transport within the inhomogeneous FFLO state.  相似文献   

3.
Pressure studies of the thermodynamics of CeCoIn5 under magnetic fields H parallel to c and H parallel to ab have been made up to P = 1.34 GPa. We recorded the signature of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state for all pressures when H parallel to ab. Also remarkably, the FFLO regime suddenly expands for P = 1.34 GPa. With the help of a microscopic theory for d-wave superconductivity, we have extracted the gyromagnetic ratio g and the Fermi velocities nu(a) and nu(c). Our study is the first evidence for the existence of the FFLO state away from the influence of the antiferromagnetic fluctuations. We find a close parallel between the T-P phase diagram of CeCoIn5 and the T-x phase diagram of the high-Tc cuprates, where x is the hole concentration.  相似文献   

4.
A Fulde-Ferrell-Larkin-Ovchinnkov (FFLO) state was previously reported in the quasi-2D heavy fermion CeCoIn5 when a magnetic field was applied parallel to the ab plane. Here, we conduct 115In NMR studies of this material in a perpendicular field, and provide strong evidence for FFLO in this case as well. Although the topology of the phase transition lines in the H-T phase diagram is identical for both configurations, there are several remarkable differences between them. Compared to H parallelab, the FFLO phase for H perpendicularab is confined in a much narrower region at the low-T-high-H corner in the H-T plane, and the critical field separating the FFLO and non-FFLO superconducting states almost ceases to have a temperature dependence. Moreover, directing H perpendicularab results in a notable change in the quasiparticle excitation spectrum within the planar node associated with the FFLO transition.  相似文献   

5.
We report high magnetic field linear magnetostriction experiments on CeCoIn5 single crystals. Two features are remarkable: (i) a sharp discontinuity in all the crystallographic axes associated with the upper superconducting critical field B(c2) that becomes less pronounced as the temperature increases and (ii) a distinctive second orderlike feature observed only along the c axis in the high field (10 T < or approximately B< or = B(c2)) low temperature (T < or approximately 0.35 K) region. This second order transition is observed only when the magnetic field lies within 20 degrees of the ab planes and there is no signature of it above B(c2), which raises questions regarding its interpretation as a field induced magnetically ordered phase. Good agreement with previous results suggests that this anomaly is related to the transition to a possible Fulde-Ferrel-Larkin-Ovchinnikov superconducting state.  相似文献   

6.
Cadmium doping the heavy-fermion superconductor CeCoIn(5) at the percent level acts as an electronic tuning agent, sensitively shifting the balance between superconductivity and antiferromagnetism and opening new ambient-pressure phase space in the study of heavy-fermion ground states.  相似文献   

7.
We show results on the vortex core dissipation through current-voltage measurements under applied pressure and magnetic field in the superconducting phase of CeCoIn{5}. We find that as soon as the system becomes superconducting, the vortex core resistivity increases sharply as the temperature and magnetic field decrease. The sharp increase in flux-flow resistivity is due to quasiparticle scattering on critical antiferromagnetic fluctuations. The strength of magnetic fluctuations below the superconducting transition suggests that magnetism is complementary to superconductivity and therefore must be considered in order to fully account for the low-temperature properties of CeCoIn{5}.  相似文献   

8.
We show that the recently observed spin resonance modes in heavy-fermion superconductors CeCoIn5 and CeCu2Si2 are magnetic excitons originating from superconducting quasiparticles. The wave vector Q of the resonance state leads to a powerful criterion for the symmetry and node positions of the unconventional gap function. The detailed analysis of the superconducting feedback on magnetic excitations reveals that the symmetry of the superconducting gap corresponds to a singlet d_{x;{2}-y;{2}} state symmetry in both compounds. In particular this resolves the long-standing ambiguity of the gap symmetry in CeCoIn5. We demonstrate that in both superconductors the resonance peak shows a significant dispersion away from Q which can be checked experimentally. Our analysis reveals the similar origin of the resonance peaks in the two heavy-fermion superconductors and in layered cuprates.  相似文献   

9.
We find theoretically that the vortex core in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is quite different from the ordinary core for a simple topological reason. The intersection point of a vortex and nodal plane of the FFLO state empties the excess spins. This leads to observable consequences in the spatial structure of the spontaneous magnetization. We analyze this topological structure based on the low lying excitation spectrum by solving a microscopic Bogoliubov-de Gennes equation to clarify its physical origin.  相似文献   

10.
The g-factor enhancement of the spin-polarized two-dimensional electron gas was measured directly over a wide range of spin polarizations, using spin flip resonant Raman scattering spectroscopy on two-dimensional electron gases embedded in Cd(1-x)Mn(x)Te semimagnetic quantum wells. At zero Raman transferred momentum, the single-particle spin flip excitation, energy Z*, coexists in the Raman spectrum with the spin flip wave of energy Z, the bare giant Zeeman splitting. We compare the measured g-factor enhancement with recent spin-susceptibility enhancement theories and deduce the spin-polarization dependence of the mass renormalization.  相似文献   

11.
We describe how the spin coherence time of a localized electron spin in solids, i.e., a solid state spin qubit, can be prolonged by applying designed electron spin resonance pulse sequences. In particular, the spin echo decay due to the spectral diffusion of the electron spin resonance frequency induced by the non-Markovian temporal fluctuations of the nuclear spin flip-flop dynamics can be strongly suppressed using multiple-pulse sequences akin to the Carr-Purcell-Meiboom-Gill pulse sequence in nuclear magnetic resonance. Spin coherence time can be enhanced by factors of 4-10 in GaAs quantum-dot and Si:P quantum computer architectures using composite sequences with an even number of pulses.  相似文献   

12.
We propose a new type of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state with a cylindrical symmetric order-parameter. We study the Ginzburg-Landau (GL) theory of the strongly Pauli limited type II superconductor with a spherical symmetric fermi surface, near the critical magnetic field of the FFLO state in the ground state. We find that the cylindrical state has a lower energy than the stripe state, which has the lowest energy in the states examined so far.  相似文献   

13.
The specific heat of the layered organic superconductor kappa-(BEDT-TTF)(2)Cu(NCS)(2), where BEDT-TTF is bisethylenedithio-tetrathiafulvalene, has been studied in magnetic fields up to 28 T applied perpendicular and parallel to the superconducting layers. In parallel fields above 21 T, the superconducting transition becomes first order, which signals that the Pauli-limiting field is reached. Instead of saturating at this field value, the upper-critical-field increases sharply and a second first-order transition line appears within the superconducting phase. Our results give strong evidence that the phase, which separates the homogeneous superconducting state from the normal state is a realization of a Fulde-Ferrell-Larkin-Ovchinnikov state.  相似文献   

14.
Neutron scattering is used to probe antiferromagnetic spin fluctuations in the d-wave heavy fermion superconductor CeCoIn5 (T_(c)=2.3 K). Superconductivity develops from a state with slow (variant Planck's over 2piGamma=0.3+/-0.15 meV) commensurate [Q_(0)=(1/2,1/2,1/2)] antiferromagnetic spin fluctuations and nearly isotropic spin correlations. The characteristic wave vector in CeCoIn5 is the same as CeIn3 but differs from the incommensurate wave vector measured in antiferromagnetically ordered CeRhIn5. A sharp spin resonance (variant Planck's over 2piGamma<0.07 meV) at variant Planck's over 2piomega=0.60+/-0.03 meV develops in the superconducting state removing spectral weight from low-energy transfers. The presence of a resonance peak is indicative of strong coupling between f-electron magnetism and superconductivity and consistent with a d-wave gap order parameter satisfying Delta(q+Q0)=-Delta(q).  相似文献   

15.
Under special conditions, a superconducting state where the order parameter oscillates in real space, the so-called FFLO state, is theoretically predicted to exist near the upper critical field, as first proposed by Fulde and Ferrell, and Larkin and Ovchinnikov. We report systematic measurements of the interlayer resistance in high magnetic fields to 45 T in the two-dimensional magnetic-field-induced organic superconductor lambda-(BETS)2FeCl4, where BETS is bis(ethylenedithio)tetraselenafulvalene. The resistance is found to show characteristic dip structures in the superconducting state. The results are consistent with pinning interactions between the vortices penetrating the insulating layers and the order parameter of the FFLO state. This gives strong evidence for an oscillating order parameter in real space.  相似文献   

16.
CeCoIn5 is a heavy fermion type-II superconductor showing clear signs of Pauli-limited superconductivity. A variety of measurements give evidence for a transition at high magnetic fields inside the superconducting state, when the field is applied either parallel to or perpendicular to the c axis. When the field is perpendicular to the c axis, antiferromagnetic order develops on the high-field side of the transition. This order remains as the field is rotated out of the basal plane, but the associated moment eventually disappears above 17°, indicating that anomalies seen with the field parallel to the c axis are not related to this magnetic order. We discuss the implications of this finding.  相似文献   

17.
New thermal conductivity experiments on the heavy-fermion superconductor CeCoIn5 down to 10 mK rule out the suggested existence of unpaired electrons. Moreover, they reveal strong multigap effects with a remarkably low "critical" field Hc2S for the small gap band, showing that the complexity of heavy-fermion band structure has a direct impact on their response under magnetic field.  相似文献   

18.
Thermal conductivity and specific heat were measured in the superconducting state of the heavy-fermion material Ce(1-x)La(x)CoIn5. With increasing impurity concentration x, the suppression of T(c) is accompanied by the increase in residual electronic specific heat expected of a d-wave superconductor, but it occurs in parallel with a decrease in residual electronic thermal conductivity. This contrasting behavior reveals the presence of uncondensed electrons coexisting with nodal quasiparticles. An extreme multiband scenario is proposed, with a d-wave superconducting gap on the heavy-electron sheets of the Fermi surface and a negligible gap on the light, three-dimensional pockets.  相似文献   

19.
The spin glass magnetic enhancement factor has been measured at T=1.3 K with63/65Cu NMR spin echo technique. Alloying iron to CuMn, (Ho) shows a large range of constancy against an external field Ho, applied in and opposite to the direction of the freezing field Hc. It is supposed that the stiffness of the frozen spin glass is stabilized in this range by a subsystem of ferromagnetic iron clusters. Bound by its own crystalline anisotropy energy, the subsystem has its own stiffness. It probably behaves as a powder system consisting of ferromagnetic single domain particle spheres, having also an isotropic distribution of domain magnetization directions and giving rise to a mean ferromagnetic NMR enhancement factor.  相似文献   

20.
Using soft-x-ray absorption spectroscopy at the Co L(2,3) and O K edges, we demonstrate that the Co3+ ions with the CoO5 pyramidal coordination in the layered Sr2CoO3Cl compound are unambiguously in the high spin state. Our result questions the reliability of the spin state assignments made so far for the recently synthesized layered cobalt perovskites and calls for a reexamination of the modeling for the complex and fascinating properties of these new materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号