首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unimolecular dissociation of H(2)N(CH(2))(3)SiOSi(CH(2))(3)NH(3)(+) generates SiC(5)H(16)NO(+) and SiC(5)H(14)N(+). The formation of SiC(5)H(16)NO(+) involves dissociation of a Si[bond]O bond and formation of an O[bond]H bond through rearrangement. The fragmentation mechanism was investigated utilizing ab initio calculations and Fourier transform ion cyclotron resonance (FTICR) mass spectrometry in combination with hydrogen/deuterium (H/D) exchange reactions. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) studies of the fully deuterated ion D(2)N(CH(2))(3)SiOSi(CH(2))(3)ND(3)(+) provided convincing evidence for a backbiting mechanism which involves hydrogen transfer from the terminal amine group to the oxygen to form a silanol-containing species. Theoretical calculations indicated decomposition of H(2)N(CH(2))(3)SiOSi(CH(2))(3)NH(3)(+) through a backbiting mechanism is the lowest energy decomposition channel, compared with other alternative routes. Two mechanisms were proposed for the fragmentation process which leads to the siloxane bond cleavage and the SORI-CID results of partially deuterated precursor ions suggest both mechanisms should be operative. Rearrangement to yield a silanol-containing product ion requires end groups possessing a labile hydrogen atom. Decomposition of disiloxane ions with end groups lacking labile hydrogen atoms yielded product ions from direct bond cleavages.  相似文献   

2.
Hydrogen bonding of the type SiO-H...A (A = O, N) has been studied in the gas phase for simple H3SiOH.acceptor complexes with the acceptor molecules being O(H)SiH3, OH2, O(H)CH3, O(CH3)2, O(CH3)SiH3, O(SiH3)2, NH3, N(CH3)H2, N(CH3)2H, N(CH3)3, N(CH3)2C6H5, and NC5H5, respectively, at the B3LYP/6-311+(2d,p) level of theory, using Bader's atoms in molecules (AIM) and Weinhold's natural bond orbital (NBO) methodology. For all complexes (except H3SiOH.N(CH3)2C6H5) the complex energy Eadd. is a good estimate for the hydrogen bond energy EHB, which is generally higher in N-acceptor complexes (-5.52 to -7.17 kcal mol-1) than in O-acceptor complexes (-2.09 to -5.06 kcal mol-1). In case of H3SiOH.N(CH3)2C6H5, EHB and Eadd. differ by the energy associated with the loss of n(N)-->pi conjugation in N(CH3)2C6H5 upon complex formation. EHB shows no correlation with O...A distances and the red shifts Deltanu(OH) of the OH-stretching vibrations when different acceptors are compared, although both parameters are commonly used to estimate the strength of the hydrogen bond from spectroscopic and diffraction data. A good linear correlation of the hydrogen bond energy EHB has been established with parameters derived from the AIM and NBO analyses, namely, the electron densities rho(HA) and rho(OH) at the H...A and O-H bond critical points (BCPs) and the NLMO bond orders BONLMO(HA) of the H...A bonds of the H3SiOH.acceptor complexes as well as the change of natural charges DeltaqNPA(O) at the O-donor atom upon H3SiOH.acceptor complex formation. Hydrogen bonding of the type SiO-H...A (A = O, N) has been also studied in the related cyclic multiple H3SiOH.acceptor complexes (H3SiOH)3, (H3SiOH)2.NC5H5, and (H3SiOH)4, respectively, at the same level of theory. Cooperative hydrogen bonding is evident for all cyclic multiple H3SiOH.acceptor complexes, whereby the strongest concomitant strengthening of the hydrogen bonds is observed for (H3SiOH)4 and (H3SiOH)2.NC5H5.  相似文献   

3.
H-transfers by 4-, 5-, and 6-membered ring transition states to the pi-bonded methylene of CH3CH2CH2NH+=CH2 (1) are characterized by theory and compared with the corresponding transfers in cation radicals. Four-membered ring H-transfers converting 1 to CH3CH2CH=N+HCH3 (2) and CH3N+H=CH2 to CH2=NH+CH3 are high-energy processes involving rotation of the source and destination RHC= groups (R = H or C2H5) to near bisection by skeletal planes; migrating hydrogens move near these planes. The H-transfer 1 --> CH3C+HCH2NHCH3 (3) has a higher energy transition-state than 1 --> 2, in marked contrast to the corresponding relative energies of 4- and 5-membered ring H-transfers in cation-radicals. Six-membered ring H-transfer-dissociation (1 --> CH2=CH2 + CH2=N+HCH3) is a closed shell analog of the McLafferty rearrangement. It has a lower energy transition-state than either 1 --> 2 or 1 --> 3, but is still a much higher energy process than 6-membered ring H-transfers in aliphatic cation radicals. In contrast to the stepwise McLafferty rearrangement in cation radicals, H-transfer and CC bond breaking are highly synchronous in 1 --> CH3N+H=CH2 + CH2=CH2. H-transfers in propene elimination from 1 are ion-neutral complex-mediated: 1--> [CH3CH2CH2+ ---NH=CH2] --> [CH3C+HCH3 NH=CH2] --> CH3CH = CH2 + CH2=NH2+. Intrinsic reaction coordinate tracing demonstrated that a slight preference for H-transfer from the methyl containing the carbon from which CH2=NH is cleaved is due to CH2=NH passing nearer this methyl than the other on its way to abstracting H, i.e., some memory of the initial orientation of the partners accompanies this reaction.  相似文献   

4.
Sertraline (C(17)H(17)Cl(2)N) as an antidepressant drug was investigated using thermal analysis (TA) measurements (TG/DTG and DTA) in comparison with electron impact (EI) mass spectral (MS) fragmentation at 70eV. Semi-empirical MO-calculations, using PM3 procedure, has been carried out on neutral molecule and positively charged species. These calculations included bond length, bond order, bond strain, partial charge distribution and heats of formation (DeltaH(f)). Also, in the present work sertraline-iodine product was prepared and its structure was investigated using elemental analyses, IR, (1)H NMR, (13)C NMR, MS and TA. It was also subjected to molecular orbital calculations (MOC) in order to confirm its fragmentation behavior by both MS and TA in comparison with the sertraline parent drug. In MS of sertraline the initial rupture occurred was CH(3)NH(2)(+) fragment ion via H-rearrangement while in sertraline-iodine product the initial rupture was due to the loss of I(+) and/or HI(+) fragment ions followed by CH(2)NH(+) fragment ion loss. In thermal analyses (TA) the initial rupture in sertraline is due to the loss of C(6)H(3)Cl(2) followed by the loss of CH(3)-NH forming tetraline molecule which thermally decomposed to give C(4)H(8), C(6)H(6) or the loss of H(2) forming naphthalene molecule which thermally sublimated. In sertraline-iodine product as a daughter the initial thermal rupture is due to successive loss of HI and CH(3)NH followed by the loss of C(6)H(5)HI and HCl. Sertraline biological activity increases with the introduction of iodine into its skeleton. The activities of the drug and its daughter are mainly depend upon their fragmentation to give their metabolites in vivo systems, which are very similar to the identified fragments in both MS and TA. The importance of the present work is also due to the decision of the possible mechanism of fragmentation of the drug and its daughter and its confirmation by MOC.  相似文献   

5.
The mechanism of the reaction of Ni^ (^2D) with ethane in the gas-phase was studied by using density functional theory.Both the B3LYP and BLYP functionals with standard all-electron basis sets are used to give the detailed information of the potential energy surface (PES) of [Ni,C2,H6]^ . The mechanisms forming the products CH4 and H2 in the reaction of Ni^ with ethane are proposed.The reductive eliminations of CH4 and H2 are typical addition-elimination reactions.Each of the two reactions consists of two elementary steps:C-C or C-H bond activations to form inserted species followed by isomerizations to from product-like intermediate.The rate determining steps for the elimination reactions of forming CH4 and H2 are the isomerization of the inserted species rather than C-C or C-H bond activations .The elimination reaction of forming H2 was found to be thermodynamically favored compared to that of CH4.  相似文献   

6.
Bicyclic alkenes 1a-e and 5 undergo [2 + 2] cycloaddition with a variety of alkynes PhC(triple bond)CPh, (TMS)C(triple bond)CH, HC(triple bond)C(CH(3))(2)OH, (TMS)C(triple bond)CCO(2)Et, PhC(triple bond)CCH(3), C(2)H(5)C(triple bond)CC(2)H(5), CH(3)C(triple bond)CC(3)H(7), and CH(3)C(triple bond)CC(2)H(5) in the presence of Co(PPh(3))(2)I(2), PPh(3), and Zn powder in toluene to afford the corresponding exo-cyclobutene derivatives 3a-m, 6, and 8a-g in fair to excellent yields. The yield of this cycloaddition is highly sensitive to the cobalt catalyst, solvent, ligand, and temperature used. A mechanism involving a metallacyclopentene intermediate is proposed to account for this cobalt-catalyzed cyclization.  相似文献   

7.
The reactions between OH+(3Sigma-) and C2H2 have been studied using crossed ion and molecular beams and density functional theory calculations. Both charge transfer and proton transfer channels are observed. Products formed by carbon-carbon bond cleavage analogous to those formed in the isoelectronic O(3P)+C2H2 reaction, e.g., 3CH2 + HCO+, are not observed. The center of mass flux distributions of both product ions at three different energies are highly asymmetric, with maxima close to the velocity and direction of the precursor acetylene beam, characteristic of direct reactions. The internal energy distributions of the charge transfer products are independent of collision energy and are peaked at the reaction exothermicity, inconsistent with either the existence of favorable Franck-Condon factors or energy resonance. In proton transfer, almost the entire reaction exothermicity is transformed into product internal excitation, consistent with mixed energy release in which the proton is transferred with both the breaking and forming bonds extended. Most of the incremental translational energy in the two higher-energy experiments appears in product translational energy, providing an example of induced repulsive energy release.  相似文献   

8.
吴琼洁  刘世雄 《结构化学》2004,23(10):1177-1182
本文合成了含水杨醛缩对硝基苯甲酰腙(简写为H2L)的钒酰配合物VOL(CH3OH)(CH3O)(1,C16H16N3O7V,Mr=413.26)和钴配合物[CoL(C5H5N)3]NO3C5H5N(2,C34H29N8O7Co,Mr=720.58)。配合物1属单斜晶系,空间群为P21/c,a=7.3253(3),b=18.8237(9),c=12.9014(5)?b=91.672(1),V=1778.2(1)3,Z=4,F(000)=848,m(MoKa)=0.603mm1,R=0.0470,wR=0.1312。配合物2属单斜晶系,空间群为P21/c,a=11.4196(8),b=17.157(1),c=17.081(1)?b=96.8233(9),V=3323.0(4)3,Z=4,F(000)=1488,m(MoKa)=0.578mm1,R=0.0455,wR=0.1311。在配合物1中,钒(V)原子由周围的酰氧基原子、配体L2的3个配位原子,去质子化甲醇的甲氧基原子和配位甲醇的氧原子配位,形成畸变的VO(ONO)(O)(O)八面体配位构型。晶体内每2个分子间通过氢键作用缔合成中心对称的分子对,OH…N氢键键长为2.861(4)?键角163.20。晶体中存在着弱p-p共轭作用。在配合物2中,钴(Ⅲ)原子由1个L2的3个配位原子和3个配位吡啶分子的3个氮原子配位,呈N4O2八面体配位构型。  相似文献   

9.
A lutetium bis(alkyl) complex stabilized by a flexible amino-phosphine ligand LLu(CH(2)Si(CH(3))(3))(2)(THF) (L = (2,6-C(6)H(3)(CH(3))(2))NCH(C(6)H(5))CH(2)P(C(6)H(5))(2)) was prepared which upon insertion of N,N'-diisopropylcarbodiimide led to C-H activation via metalation of the ligand aryl methyl followed by reduction of the C[double bond, length as m-dash]N double bond.  相似文献   

10.
The photodissociation dynamics of methylamines (CH(3)NH(2) and CD(3)ND(2)) on the first electronically excited state has been investigated using the velocity map ion imaging technique probing the H or D fragment. Two distinct velocity components are found in the H(D) translational energy distribution, implying the existence of two different reaction pathways for the bond dissociation. The high H(D) velocity component with the small internal energy of the radical fragment is ascribed to the N-H(D) fragmentation via the coupling of S(1) to the upper-lying S(2) repulsive potential energy surface along the N-H(D) bond elongation axis. Dissociation on the ground S(0) state prepared via the nonadiabatic dynamics at the conical intersection should be responsible for the slow H(D) fragment. Several S(1) vibronic states of methylamines including the zero-point level and nnu(9) states (n=1, 2, or 3) are exclusively chosen in order to explore the effect of the initial quantum content on the chemical reaction dynamics. The branching ratio of the fast and slow components is found to be sensitive to the initial vibronic state for the N-H bond dissociation of CH(3)NH(2), whereas it is little affected in the N-D dissociation event of CD(3)ND(2). The fast component is found to be more dominant in the translational distribution of D from CD(3)ND(2) than it is in that of H from CH(3)NH(2). The experimental result is discussed with a plausible mechanism of the conical intersection dynamics.  相似文献   

11.
Treatment of the complexes [Re(NO)2(PR3)2][BAr(F)4] (R = Cy, 1 a; R = iPr, 1 b) with phenyldiazomethane gave the cationic benzylidene species [Re{CH(C6H5)}(NO)2(PR3)2][BAr(F)4] (2 a and 2 b) in good yields. Upon reaction of 2 a and 2 b with acetonitrile, the consecutive formation of [Re(N[triple bond]CCH3)(N[triple bond]CPh)(NO)(OC(CH3)=NH)(PR3)][BAr(F)4] (3 a and 3 b) and [Re(NCCH3)(OC{CH3}NH{C6H5})(NO)(PR3)2][BAr(F)4] (4 a and 4 b) was observed. The proposed reaction sequence involves the coupling of coordinated NO, carbene and acetonitrile molecules to yield the (1Z)-N-[imino(phenyl)methyl]ethanimidate ligand. The coupling of the nitrosyl and the benzylidene is anticipated to occur first, forming an oximate species. The subsequent acetonitrile addition can be envisaged as a heteroene reaction of the oximate and the acetonitrile ligand yielding 3 a and 3 b, which in turn can cyclise and undergo a prototropic shift initiated by an internal attack of the ethaneimidate ligand on the benzonitrile moiety to afford 4 a and 4 b.  相似文献   

12.
The parent allenediazonium monocation H2C[double bond]C[double bond]CH(N2+) and ten of its substituted derivatives XYC[double bond]C[double bond]C(Z)N2+ (with F, CF3, Me, OMe, and Me2N as substituents) were studied by DFT at the B3LYP/6-31++G** level. Except for the Me2N-substituted derivative that forms a monocation-N2 complex, structurally intact allenediazonium ions were obtained as minima in all cases. Protonation studies at various sites were performed on allenediazonium cations, and relative energies of the resulting minima were used to identify the energetically most favored dications. In the majority of cases, protonation at the central carbon of the allenic moiety (C2) is most favored, forming delocalized allyl cation-N2+ species. The same dication structure is formed via initial C3-protonation, followed by a formal hydride shift, in cases where a carbocation-stabilizing group is placed at C3. When a CF3 group is placed at C3, initial protonation at C1 resulted in a 1,3-fluorine shift, to generate a fluoroallyl cation linked to a CH2N2+ moiety. Structural features in the allenediazonium monocations and their protonated dications were examined, taking into account their geometrical features, computed charges, and the GIAO NMR shifts.  相似文献   

13.
The deprotection of phosphonium chloride salts [PR2(CH2OH)2]+Cl- and subsequent condensation reaction with N-methyl-2-aminopyridine has been carried out to give a series of ligands of the form PR2CH2N(CH3)C5H4N (R=Ph , Cy , t-Bu ) which have been fully characterised either as the pure ligand () or the air stable borane adducts (R=Cy , t-Bu ). The 1:1 reactions of , and with PdCl2(COD) gave the N,P chelate complexes [Pd{PR2CH2N(CH3)C5H4N}Cl2]; the Cy () and t-Bu () complexes were characterised by X-ray crystallography. The bisligated species [Pd{PCy2CH2N(CH3)C5H4N}2Cl2] () was obtained when the reaction was carried out at higher temperatures and the ligands were found to be coordinated to the metal in a trans configuration through the phosphorus donors. Abstraction of the chlorides from the bis-ligated species , using silver salts, resulted in the coordination of the pyridine ring forming the bis-chelate complex [Pd{PCy2CH2N(CH3)C5H4N}2]2+. In comparison, the palladium bis-chelate complex of ligand [Pd{PPh2CH2N(CH3)C5H4N}2]2+ () was shown to form in a cis configuration and was fully characterised by X-ray crystallography.  相似文献   

14.
Extensive classical chemical dynamics simulations of gas-phase X(-) + CH(3)Y → XCH(3) + Y(-) S(N)2 nucleophilic substitution reactions are reviewed and discussed and compared with experimental measurements and predictions of theoretical models. The primary emphasis is on reactions for which X and Y are halogen atoms. Both reactions with the traditional potential energy surface (PES), which include pre- and postreaction potential energy minima and a central barrier, and reactions with nontraditional PESs are considered. These S(N)2 reactions exhibit important nonstatistical atomic-level dynamics. The X(-) + CH(3)Y → X(-)---CH(3)Y association rate constant is less than the capture model as a result of inefficient energy transfer from X(-)+ CH(3)Y relative translation to CH(3)Y rotation and vibration. There is weak coupling between the low-frequency intermolecular modes of the X(-)---CH(3)Y complex and higher frequency CH(3)Y intramolecular modes, resulting in non-RRKM kinetics for X(-)---CH(3)Y unimolecular decomposition. Recrossings of the [X--CH(3)--Y](-) central barrier is important. As a result of the above dynamics, the relative translational energy and temperature dependencies of the S(N)2 rate constants are not accurately given by statistical theory. The nonstatistical dynamics results in nonstatistical partitioning of the available energy to XCH(3) +Y(-) reaction products. Besides the indirect, complex forming atomic-level mechanism for the S(N)2 reaction, direct mechanisms promoted by X(-) + CH(3)Y relative translational or CH(3)Y vibrational excitation are possible, e.g., the roundabout mechanism.  相似文献   

15.
Reactions of the nitrone CH3CH=N(CH3)O and the nitrile oxide CH3C[triple bond]NO with the nitrile complexes trans-[MCl2(N[triple bond]CCH3)2] (M = Pt, 1; Pd, 2) were investigated by theoretical methods at B3LYP and, for some processes, CCSD(T) levels of theory. The mechanisms of substitutions and cycloadditions were studied in detail. The former occur via a concerted asynchronous mechanism of dissociative type. The calculations of the metal-ligand bond energies in the starting complexes and substitution products and the analysis of structural features of the transition states indicate that the M-N bond dissociation (rather than M-O bond formation) is the step, which controls the reactivity of and in substitutions. The different chemical behaviours of the Pt and Pd complexes towards the 1,3-dipoles were investigated. The exclusive isolation of cycloaddition rather than substitution products in any solvents in the case of is both kinetically and thermodynamically controlled.The switch of the reaction mode from cycloaddition to substitution for 2 in CH2Cl2 solution is caused by the significantly lower Pd-N bond energy in comparison with the Pt-N bond energy, consistent with the higher lability of the Pd complexes. The different chemical behaviour of 2 in CH3CN and CH2Cl2 solvents is accounted for by the great excess of acetonitrile in the CH3CN solution rather than a different solvation character. The relative variation of Wiberg bond indices along the reaction path is proposed as a quantitative criterion for the classification of the reaction mechanism.  相似文献   

16.
Two functional groups can be delivered at once to organo-rare earth complexes, (L)MR(2) and (L)(2)MR (M = Sc, Y; L = ({1-C(NDippCH(2)CH(2)N)}CH(2)CMe(2)O), Dipp = 2,6-(i)Pr(2)-C(6)H(3); R = CH(2)SiMe(3), CH(2)CMe(3)), via the addition of E-X across the metal-carbene bond to form a zwitterionic imidazolinium-metal complex, (L(E))MR(2)X, where L(E) = {1-EC(NDippCH(2)CH(2)N)}CH(2)CMe(2)O, E is a p-block functional group such as SiR(3), PR(2), or SnR(3), and X is a halide. The "ate" complex (L(Li))ScR(3) is readily accessible and is best described as a Li carbene adduct, ({1-Li(THF)C(NDippCH(2)CH(2)N)}CH(2)CMe(2)O)Sc(CH(2)SiMe(3))(3), since structural characterization shows the alkoxide ligand bridging the two metals and the carbene Li-bound with the shortest yet recorded Li-C bond distance. This can be converted via lithium halide-eliminating salt metathesis reactions to alkylated or silylated imidazolinium derivatives, (L(E))ScR(3) (E = SiMe(3) or CPh(3)). All the E-functionalized imidazolinium complexes spontaneously eliminate functionalized hydrocarbyl compounds upon warming to room temperature or slightly above, forming new organic products ER, i.e., forming C-Si, C-P, and C-Sn bonds, and re-forming the inorganic metal carbene (L)MR(X) or (L)(2)MX complex, respectively. Warming the tris(alkyl) complexes (L(E))MR(3) forms organic products arising from C-C or C-Si bond formation, which appears to proceed via the same elimination route. Treatment of (L)(2)Sc(CH(2)SiMe(3)) with iodopentafluorobenzene results in the "reverse sense" addition, which upon thermolysis forms the metal aryl complex (L)(2)Sc(C(6)F(5)) and releases the iodoalkane Me(3)SiCH(2)I, again facilitated by the reversible functionalization of the N-heterocyclic carbene group in these tethered systems.  相似文献   

17.
Most H2 eliminations from cations in the gas phase are formally 1,1- or 1,2- processes. Larger ring size H2 eliminations are rare and little studied. Thus, whether the 6-center, 1,4- elimination CH3CH=N+HCH3-->CH2=CHN+H=CH2+H2 is concerted and synchronous, as indicated by isotope effects and predicted by conservation of orbital symmetry, is a significant question. This reaction is characterized here by application of QCI and B3LYP theories. CH bond-breaking and H-H bond-making in this reaction are found by theory to be highly synchronized, consistent with previously established isotope effects and in contrast to "forbidden" 1,2-eliminations from organic cations in the gas phase. This reaction is made feasible by its conservation of orbital symmetry, the energy supplied by formation of the H-H bond, and a favorable geometry of the ion for eliminating H2.  相似文献   

18.
The reaction of ketene OCCPh(2) with the four-coordinate titanium(IV) imide (L(1))Ti[double bond]NAr(OTf) (L(1)(-) = [Ar]NC(CH(3))CHC(CH(3))N[Ar], Ar = 2,6-[CH(CH(3))(2)](2)C(6)H(3)) affords the tripodal dimine-alkoxo complex (L(2))Ti[double bond]NAr(OTf) (L(2)(-) = [Ar]NC(CH(3))CHC(O)[double bond]CPh(2)C(CH(3))N[Ar]). Complex (L(2))Ti[double bond]NAr(OTf) forms from electrophilic attack of the beta-carbon of the ketene on the gamma-carbon of the Nacnac(-) NCC(gamma)CN ring. On the contrary, nucleophiles such as LiR (R(-) = Me, CH(2)(t)Bu, and CH(2)SiMe(3)) deprotonate cleanly in OEt(2) the methyl group of the beta-carbon on the former Nacnac(-) backbone to yield the etherate complex (L(3))Ti[double bond]NAr(OEt(2)), a complex that is now supported by a chelate bis-anilido ligand (L(3)(2)(-) = [Ar]NC(CH(3))CHC(CH(2))N[Ar]). In the absence of electrophiles or nucleophiles, the robust (L(1))Ti[double bond]NAr(OTf) template was found to form simple adducts with Lewis bases such as CN(t)Bu or NCCH(2)(2,4,6-Me(3)C(6)H(2)). Complexes (L(2))Ti[double bond]NAr(OTf), (L(3))Ti[double bond]NAr(OEt(2)), and the adducts (L(1))Ti[double bond]NAr(OTf)(XY) [XY = CN(t)Bu and NCCH(2)(2,4,6-Me(3)C(6)H(2))] were structurally characterized by single-crystal X-ray diffraction studies.  相似文献   

19.
The dissociative hydrolysis reaction of the methyl phosphate monoanion has been studied for the reactant species CH(3)OPO(3)H(-) (1) and CH(3)OPO(3)H(-) x H(2)O (1a) in the gas and aqueous phases by density functional theory (B3LYP) calculations. Nonspecific solvation effects were taken into account with the polarizable continuum model PCM either by solvating the gas-phase reaction paths or by performing geometry searches directly in the presence of the solvation correction. In agreement with previous theoretical studies, our gas-phase calculations indicate that proton transfer to the methoxy group of 1 is concerted with P-O bond cleavage. In contrast, optimizations performed with the PCM solvation model establish the existence of the tautomeric form CH(3)O(+)(H)PO(3)(2-) (2) as an intermediate, indicating that proton transfer and P-O bond cleavage become uncoupled in aqueous solution. The dissociative pathway of 1a is energetically favored over the dissociative pathway of 1 only when the added water molecule plays an active catalytic role in the prototropic rearrangement 1 <--> 2. In that case, it is found that the collapse (via P-O bond cleavage) of the hydrated zwitterionic form CH(3)O(+)(H)PO(3)(2-) x H(2)O (2a) is rate-determining. This collapse may occur by a stepwise mechanism through a very short-lived metaphosphate intermediate (PO(3)(-)), or by a concerted S(N)2-like displacement through a loose metaphosphate-like transition state. The present calculations do not allow a distinction to be made between these two alternatives, which are both in excellent agreement with experiment. The present study also reveals that PO(3)(-) reacts selectively with CH(3)OH and H(2)O nucleophiles in aqueous solution. However, the observed selectivity of metaphosphate is governed by solvation effects, not nucleophilicity (water being much more effective than methanol in capturing PO(3)(-)). This arises from a better solvation of the addition product H(2)O(+)PO(3)(2-) as compared to CH(3)O(+)(H)PO(3)(2-).  相似文献   

20.
Group 4 metallacycles [eta5:sigma-Me2C(C5H4)(C2B10H10)]Ti[eta2-N(Me)CH2CH2N(Me)] (1a), [eta5:sigma-Me2C(C5H4)(C2B10H10)]Zr[eta2-N(Me)CH2CH2N(Me)](HNMe2) (1b) and [eta5:sigma-Me2C(C5H4)(C2B10H10)]M[eta2-N(Me)CH2CH2CH2N(Me)] (M = Ti (2a), Zr (2b), Hf (2c)) were synthesized by reaction of [eta5:sigma-Me2C(C5H4)(C2B10H10)]M(NMe2)(2) (M = Ti, Zr, Hf) with MeNH(CH2)(n)NHMe (n = 2, 3). These metal complexes reacted with unsaturated molecules such as 2,6-Me2C6H3NC, PhNCO and PhCN to give exclusively M-N bond insertion products. The M-C(cage) bond remained intact. Such a preference of M-N over M-C(cage) insertion is suggested to most likely be governed by steric factors, and the mobility of the migratory groups plays no obvious role in the reactions. This work also shows that the insertion of unsaturated molecules into the metallacycles is a useful and effective method for the construction of very large ring systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号