首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nano-fibrillar arrays are fabricated using polystyrene materials. The average diameter of each fiber is about 300 nm. Experiments show that such a fibrillar surface possesses a relatively hydrophobie feature with a water contact angle of 142°. Nanoscale friction properties are mainly focused on. It is found that the friction force of polystyrene nano-fibrillar surfaces is obviously enhanced in contrast to polystyrene smooth surfaces. The apparent coefficient of friction increases with the applied load, but is independent of the scanning speed. An interesting observation is that the friction force increases almost linearly with the real contact area, which abides by the fundamental Bowden-Tabor law of nano-seale friction.  相似文献   

2.
《Composite Interfaces》2013,20(1):19-40
In this paper the micro-scratch test is simulated by ANSYS finite element code for thin hard coating on substrate composite material system. Coulomb friction between indenter and material surface is considered. The material elastic-plastic properties are taken into account. Contact elements are used to simulate the frictional contact between indenter and material surfaces, as well as the frictional contact after the detachment of coating/substrate interfaces has taken place. In the case of coating/substrate interfaces being perfectly bonded, the distributions of interfacial normal stress and shear stress are obtained for the material system subjected to normal and tangential loading. In the case of considering the detachment of interfaces, the length of interfacial detachment and the redistribution of stresses because of interfacial detachments are obtained. The influences of different frictional coefficients and different indenter moving distances on the distributions of stresses and displacements are studied. In the simulation, the interfacial adhesion shear strength is considered as a main adhesion parameter of coating/substrate interfaces. The critical normal loading from scratch tests are directly related to interfacial adhesion shear strengths. Using the critical normal loading known from experiments, the interfacial adhesion shear strength is obtained from the calculation. When the interfacial adhesion shear strength is known, the critical normal loading is obtained for different coating thicknesses. The numerical results are compared with the experimental values for composite materials of thin TiN coating on stainless steel substrate.  相似文献   

3.
In this paper, the feasibility of using explosion synthesized diamond nanoparticles with an average particle size (APS) of 3–5 nm with a concentration of 1 % by weight for improving lubrication and friction in elastohydrodynamic lubrication (EHL) was investigated. Owing to the orders of magnitude increase in the viscosity of the lubricant in the EHL contact zone, diamond nanoparticles in the lubricant polish the surfaces at the nanoscale which decreases the composite roughness of contacting surfaces. The reduced composite roughness results in an increased film thickness ratio which yields lower friction. In the numerical analysis, governing equations of lubricant flow in the full elastohydrodynamic lubrication were solved, and the shear stress distribution over the fluid film was calculated. Using an abrasion model and the shear stress distribution profile, the material removal by the nanofluid containing nanoparticles and the resultant surface roughness were determined. The numerical analysis showed that in full EHL regime, the nanolubricant can reduce the composite roughness of moving surfaces. Experimental results from prior studies which exhibited surface polishing by such nanolubricants in boundary, mixed, and full elastohydrodynamic lubrication were used for comparison to the numerical model.  相似文献   

4.
Standing shear waves in a plane-parallel rubberlike layer fixed without slippage between two rigid plates with finite masses are investigated. The lower plate, which underlies the layer, oscillates in the direction parallel to its surface under an external harmonic force, whereas the upper plate freely overlies the layer. It is shown both theoretically and experimentally that such a system exhibits resonances at frequencies the values of which depend on the mass of the free plate and the shear modulus of the layer. The shapes of the resonance curves are calculated and measured for different values of parameters of the layer and different masses of the upper plate. From the measured resonance curves, it is possible to determine the dynamic shear modulus and the shear viscosity of the rubberlike material.  相似文献   

5.
The effect of thermomechanical coupling in a viscoelastic hollow cylinder subjected to sinusoidal shear stresses or shear displacements has been studied. The problem is a simple model of torsional springs made of rubberlike materials. The material is assumed to be thermorheologically simple. A non-linear boundary value problem is formulated for the almost steady mechanical oscillation coupled with a slowly varying temperature distribution. The wave motion is analyzed by the well-known WKB approximation. Corresponding temperature distributions are calculated numerically by iterative procedures. Although the applied stress and applied displacement are small, significant temperature rises are found. Different stress and temperature distributions are compared for various frequencies.  相似文献   

6.
To understand mechanisms of chemical mechanical planarization (CMP), an atomic force microscope (AFM) was used to characterize polished layer surfaces formed by selective transfer after a set of polishing experiments. It is know that in the process of friction of two materials and in the presence of own lubricants, wear phenomenon itself manifests as a transfer of material from an element of a friction couple on the other, this phenomenon being characteristic to the selective transfer process. A selective transfer can be safely achieved in a friction couple, if there is a favorable energy, and in the presence of relative movement, if in the friction area is a material made by copper and the lubricant is adequate (glycerin or special lubricant). The forming selective layer on the contact surfaces makes that the friction force to be very low because of the structure formed by selective transfer. To optimize the CMP process, one needs to obtain information on the interaction between the slurry abrasive particles (with the size range of about 30–70 nm) and the polished surface. To study such interactions, we used AFM. Surface analysis of selective layer using the AFM revealed detailed surface characteristics obtained by CMP. Studying the selective layer CMP, of which the predominated one is copper (in proportion of over 85%), we found that the AFM scanning removes the surface oxide layer in different rates depending on the depth of removal and the pH of the solution. Oxide removal happens considerably faster than the copper CMP removal from the selective layer. This is in agreement with generally accepted models of copper CMP. It was found that removal mechanisms depend on the slurry chemistry, potential per cent of oxidizer, and the applied load. This presentation discusses these findings. Both load force and the friction forces acting between the AFM tip and surface during the polishing process were measured. One big advantage of using the AFM tip (of radius about 50 nm) as abrasive silica particle is that we can measure forces acting between the particle-tip and the surface being polished. Here, we report measurement of the friction force while scratching and polishing. The correlation between those forces and removal rate is discussed.  相似文献   

7.
Governing equations of motion for vibrations of a general multilayered plate consisting of an arbitrary number of alternate stiff and soft layers of orthotropic materials are derived by using variational principles. Extension, bending and in-plane shear deformations in stiff layers and only transverse shear deformations in soft layers are considered as in conventional sandwich structural analysis. In addition to transverse inertia, longitudinal translatory and rotary inertias are included, as such analysis gives higher order modes of vibration and leads to accurate results for relatively thick plates. Vibration and damping analysis of rectangular simply supported plates consisting of alternate elastic and viscoelastic layers is carried out by taking a series solution and applying the correspondence principle of linear viscoelasticity. The damping effectiveness, in term of the system loss factor, for all families of modes for three-, five- and seven-layered plates is evaluated and its variations with geometrical and material property parameters are investigated.  相似文献   

8.
Low surface energy polymer thin-films can be applied to surfaces to increase hydrophobicity and reduce friction for a variety of applications. However, wear of these thin films, resulting from repetitive rubbing against another surface, is of great concern. In this study, we show that highly hydrophobic surfaces with persistent abrasion resistance can be fabricated by depositing fluorinated carbon thin films on sandblasted glass surfaces. In our study, fluorinated carbon thin films were deposited on sandblasted and as-received smooth glass using deep reactive ion etching equipment by only activating the passivation step. The surfaces of the samples were then rubbed with FibrMet abrasive papers in a reciprocating motion using an automatic friction abrasion analyzer. During the rubbing, the static and kinetic friction forces were also measured. The surface wetting properties were then characterized using a video-based contact angle measuring system to determine the changes in water contact angle as a result of rubbing. Assessment of the wear properties of the thin films was based on the changes in the water contact angles of the coated surfaces after repetitive rubbing. It was found that, for sandblasted glass coated with fluorinated carbon film, the water contact angle remained constant throughout the entire rubbing process, contrary to the smooth glass coated with fluorinated carbon film which showed a drastic decrease in water contact angle with the increasing number of rubbing cycles. In addition, the static and kinetic friction coefficients of the sandblasted glass were also much lower than those of the smooth glass.  相似文献   

9.
Sea ice contains flaws including frictional contacts. We aim to describe quantitatively the mechanics of those contacts, providing local physics for geophysical models. With a focus on the internal friction of ice, we review standard micro-mechanical models of friction. The solid's deformation under normal load may be ductile or elastic. The shear failure of the contact may be by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models. When the material under study is ice, several of the rheological parameters in the standard models are not constant, but depend on the temperature of the bulk, on the normal stress under which samples are pressed together, or on the sliding velocity and acceleration. This has the effect of making the shear stress required for sliding dependent on sliding velocity, acceleration, and temperature. In some cases, it also perturbs the exponent in the normal-stress dependence of that shear stress away from the value that applies to most materials.

We unify the models by a principle of maximum displacement for normal deformation, and of minimum stress for shear failure, reducing the controversy over the mechanism of internal friction in ice to the choice of values of four parameters in a single model. The four parameters represent, for a typical asperity contact, the sliding distance required to expel melt-water, the sliding distance required to break contact, the normal strain in the asperity, and the thickness of any ductile shear zone.  相似文献   

10.
Geometric and micro-structure design, tribology properties of beetle joints were experimentally studied, which aimed to enlighten ideas for the joint design of MEMS.The observation by using SEM and microscopy suggested that beetle's joints consist of a concave surface matched with a convex surface. The heads of the beetles, rubbing with flat glass, were tested in fresh and dried statuses and compared with sapphire ball with flat glass. Frictional coefficient of the joint material on glass was significantly lower than that of the sapphire sphere on glass. The material of the joint cuticle for convex surface is rather stiff (the elastic modulus 4.5 Gpa) and smooth. The surface is hydrophobic (the contact angle of distilled water was 88.3° ). It is suggested here that the high stiffness of the joint material and hydrophobicity of the joint surface are parts of the mechanism minimizing friction in insect joints.  相似文献   

11.
Geometric and micro-structure design, tribology properties of beetle joints were experimentally studied, which aimed to enlighten ideas for the joint design of MEMS. The observation by using SEM and microscopy suggested that beetle’s joints consist of a concave surface matched with a convex surface. The heads of the beetles, rubbing with flat glass, were tested in fresh and dried statuses and compared with sapphire ball with flat glass. Frictional coefficient of the joint material on glass was significantly lower than that of the sapphire sphere on glass. The material of the joint cuticle for convex surface is rather stiff (the elastic modulus 4.5 Gpa) and smooth. The surface is hydrophobic (the contact angle of distilled water was 88.3°). It is suggested here that the high stiffness of the joint material and hydrophobicity of the joint surface are parts of the mechanism minimizing friction in insect joints.  相似文献   

12.
Polyphenylene sulfide (PPS) fiber materials, whose raw fibers had been heat treated previously for 1 to 5 days, were prepared by a hot-pressing method. The tribological properties of PPS resin and fiber materials against an AISI 1045 steel ring were evaluated using a block-on-ring wear tester. The results showed that the sample whose raw fibers had been heated at 240°C for 1 day (S1) exhibited the highest impact strength as well as the lowest friction coefficient and wear rate. The friction coefficient of S1 was 39% lower than that of the PPS resin material, and its wear rate was 1 to 2 orders of magnitude lower than those of the other samples. DSC analysis results indicated that the condensed structure of the samples gradually changed from the crystalline to the amorphous state with the increase of heat-treatment time of the raw fibers. DMA and DSC analysis results proved that severe, oxidative cross-linking reactions occurred when the raw fibers were heated over 3 days. It is concluded that proper heat treatment of the raw fibers is advantageous to improve the degree of crystallinity and appropriate oxidative cross-linking; therefore, the prepared PPS fiber material can exhibit better mechanical and tribological performances.  相似文献   

13.
Vertically aligned carbon nanotube (CNT) arrays have been grown onto the carbon fiber fabric using a catalytic chemical vapor deposition (CCVD) method. The as-synthesized CNT arrays are about 20 μm in height, and the nanotube has a mean inner and outer diameter of 2.6 nm, 5.5 nm, respectively. The CNT-grafted carbon fabric shows a hydrophobic property with a contact angle over 145°, and the single CNT-grafted carbon fiber shows a sharp increase of dynamic contact angle in de-ionized water from original 71.70° to about 103°, but a little increase does in diiodomethane or E-51 epoxy resin. However, the total surface energy of carbon nanotube-grafted carbon fiber is almost as same as that of as-received carbon fiber. After CNTs growth, single fiber tensile tests indicated a slight tensile strength degradation within 10% for all different lengths of fibers, while the fiber modulus has not been significantly damaged. Compared with the as-received carbon fibers, a nearly 110% increase of interfacial shear strength (IFSS) from 65 to 135 MPa has been identified by single fiber pull-out tests for the micro-droplet composite, which is reinforced by as-received carbon fiber or CNT-grafted carbon fiber.  相似文献   

14.
Abaca fibers show tremendous potential as reinforcing components in composite materials. The purpose of this study is to investigate the effect of abaca fiber content on physical, mechanical and tribological properties of abaca fiber reinforced friction composites. The friction composites were fabricated by a compression molder and investigated using a friction test machine. The experiment results show that surface treatment of abaca fibers could improve the mechanical properties of abaca fiber and interface bonding strength of the abaca fiber and composite matrix. Density of friction composites decreased with the increasing of abaca fiber content (0 wt%–4 wt%). The different content of abaca fibers had less effect on hardness of specimens, whereas large of impact strength. The specimen F3 with 3 wt% abaca fibers had the lowest wear rate and possessed the best wear resistance, followed by specimen F4 with 4 wt% abaca fibers. The worn surface morphologies were observed using the Scanning Electron Microscopy for study the tribological behavior and wear mechanism. The results show that a large amount of secondary contact plateaus presented on the worn surface of specimen F3 which had relatively smooth worn surface.  相似文献   

15.
Standing shear waves arising in layered media the shear modulus of which varies in a stepwise manner at the plain boundaries between the layers are considered. A general solution is obtained for the shear wave amplitudes in a resonator with an N-layer structure the lower boundary of which performs harmonic vibrations while a finite-mass plate is attached to the upper boundary. Results of calculations and measurements are presented for a resonator with a structure in which nondeformable metal layers alternate with elastic rubberlike polymer layers. It is shown that the resonance frequencies of such a resonator can be controlled by changing the number of layers and their thicknesses. It is demonstrated, both experimentally and theoretically, that, from the resonance curve of a resonator with a two-layer structure, it is possible to determine the shear modulus of one of the layers under the condition that the elasticity of the other layer is known. The method of separation into a finite number of layers is used to analyze the resonance characteristics of a one-dimensional resonator filled with a rubberlike medium the properties of which continuously vary in the direction perpendicular to the shear displacements. The choice of the number of layers depending on the type of inhomogeneity is analyzed.  相似文献   

16.
Z. Song 《哲学杂志》2013,93(28):3215-3233
Oscillatory sliding contact between a rigid rough surface and an elastic–plastic half-space is examined in the context of numerical simulations. Stick-slip at asperity contacts is included in the analysis in the form of a modified Mindlin theory. Two friction force components are considered – adhesion (depending on the real area of contact, shear strength and interfacial adhesive strength) and plowing (accounting for the deformation resistance of the plastically deformed half-space). Multi-scale surface roughness is described by fractal geometry, whereas the interfacial adhesive strength is represented by a floating parameter that varies between zero (adhesionless surfaces) and one (perfectly adhered surfaces). The effects of surface roughness, apparent contact pressure, oscillation amplitude, elastic–plastic properties of the half-space and interfacial adhesion on contact deformation are interpreted in the light of numerical results of the energy dissipation, maximum tangential (friction) force and slip index. A non-monotonic trend of the energy dissipation and maximum tangential force is observed with increasing surface roughness, which is explained in terms of the evolution of the elastic and plastic fractions of truncated asperity contact areas. The decrease of energy dissipation with increasing apparent contact pressure is attributed to the increase of the elastic contact area fraction and the decrease of the slip index. For a half-space with fixed yield strength, a lower elastic modulus produces a higher tangential force, whereas a higher elastic modulus yields a higher slip index. These two competing effects lead to a non-monotonic dependence of the energy dissipation on the elastic modulus-to-yield strength ratio of the half-space. The effect of interfacial adhesion on the oscillatory contact behaviour is more pronounced for smoother surfaces because the majority of asperity contacts deform elastically and adhesion is the dominant friction mechanism. For rough surfaces, higher interfacial adhesion yields less energy dissipation because more asperity contacts exhibit partial slip.  相似文献   

17.
This paper reports on spatially resolved measurements of the shear stress distribution at a frictional interface between a flat rubber substrate and a glass lens. Silicone rubber specimens marked close to their surface by a colored pattern have been prepared in order to measure the surface displacement field induced by the steady-state friction of the spherical probe. The deconvolution of this displacement field then provides the actual shear stress distribution at the contact interface. When a smooth glass lens is used, a nearly constant shear stress is achieved within the contact. On the other hand, a bell-shaped shear stress distribution is obtained with rough lenses. These first results suggest that simple notions of real contact area and constant interface shear stress cannot account for the observed changes in local friction when roughness is varied.  相似文献   

18.
The ability of femtosecond laser pulses to pattern coated tribological surfaces in order to improve their wear behavior was investigated. Experiments were performed with a Ti:sapphire laser (wavelength: 800 nm, energy density: 2 J/cm2, pulse duration: 100 fs) on TiN- and on TiCN-coated surfaces. Morphological analyses of the laser-treated surfaces were carried out and did not reveal any film delamination or other coating damage after laser processing. Tribological tests simulating rapidly increasing contact pressures under boundary friction were performed on both unpatterned and laser-patterned coated surfaces using a steel counter body. The patterned surfaces showed significantly better tribological performance with respect to stability and the value of the friction coefficient during testing. EDX analyses of the tested unpatterned samples revealed complete coating removal and material transfer from the counter body to the sample surface. In the case of the laser-patterned surfaces, only slight coating damage and an accumulation of debris from the steel counter body in the laser-induced pores were observed. PACS 42.62.Cf; 81.40.Wx  相似文献   

19.
Measurements of skin friction have been performed on flat and hexagonal concave surfaces using the conventional Clauser-chart method and the Oil film interferometry. The values of shear stress coefficients measured by the conventional Clauser-chart method on a flat plate were found to be up to 13 % higher from the ones deduced by the Oil film interferometry. The velocity profiles required for the Clauser-chart were obtained by using hot wire anemometry. The analysis of the results suggested that the conventional Clauser-chart method cannot be used to predict shear stresses acting on the hexagonal concave surfaces due to the existence of strong pressure gradients. Oil film interferometry not only provides accurate and direct values of shear stress coefficients but also helps to visualize the flow above the surface.  相似文献   

20.
One of the main differences between a low-pressure plasma treatment and an atmospheric pressure plasma treatment is that in atmosphere, the substrate material may absorb significant amount of water which may potentially influence the plasma treatment effects. This paper investigates how the moisture absorbed by aramid fibers during the atmospheric pressure plasma treatment influences the aging behavior of the modified surfaces. Kevlar 49 fibers with different moisture regains (MR) (0.5, 3.5 and 5.5%, respectively) are treated with atmospheric pressure plasma jet (APPJ) with helium as the carrier gas and oxygen as the treatment gas. Surface wettability and chemical compositions, and interfacial shear strengths (IFSS) to epoxy for the aramid fibers in all groups are determined using water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and micro-bond pull out tests, respectively. Immediately after the plasma treatment, the treated fibers have substantially lower water contact angles, higher surface oxygen and nitrogen contents, and larger IFSS to epoxy than those of the control group. At the end of 30 day aging period, the fibers treated with 5.5% moisture regain had a lower water contact angle and more polar groups on the fiber surface, leading to 75% improvement of IFSS over the control fibers, while those for the 0.5 and 3.5% moisture regain groups were only 30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号