首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present phase coherence time measurements in quasi-one-dimensional Ag wires doped with Fe Kondo impurities of different concentrations n_{s}. Because of the relatively high Kondo temperature T_{K} approximately 4.3 K of this system, we are able to explore a temperature range from above T_{K} down to below 0.01T_{K}. We show that the magnetic contribution to the dephasing rate gamma_{m} per impurity is described by a single, universal curve when plotted as a function of T/T_{K}. For T>0.1T_{K}, the dephasing rate is remarkably well described by recent numerical results for spin S=1/2 impurities. At lower temperature, we observe deviations from this theory. Based on a comparison with theoretical calculations for S>1/2, we discuss possible explanations for the observed deviations.  相似文献   

2.
We have measured the phase decoherence rate tau_{varphi};{-1} of conduction electrons in disordered Ag wires implanted with 2 and 10 ppm Fe impurities, by means of the weak-localization magnetoresistance. The Kondo temperature of Fe in Ag, T_{K} approximately 4 K, is in the ideal temperature range to study the progressive screening of the Fe spins as the temperature T falls below T_{K}. The contribution to tau_{varphi};{-1} from the Fe impurities is clearly visible over the temperature range 40 mK-10 K. Below T_{K}, tau_{varphi};{-1} falls rapidly until T/T_{K} approximately 0.1, in agreement with recent theoretical calculations. At lower T tau_{varphi};{-1} deviates from theory with a flatter T-dependence. Understanding this anomalous dephasing for T/T_{K}<0.1 may require theoretical models with larger spin and number of channels.  相似文献   

3.
Using the natural orbitals renormalization group(NORG)method,we investigate the screening of the local spin of an Anderson impurity interacting with the helical edge states in a quantum spin Hall insulator.It is found that there is a local spin formed at the impurity site and the local spin is completel.y screened by electrons in the quantum spin Hall insulator.Meanwhile,the local spin is screened dominantly by a single active natural orbital.We then show that the Kondo screening mechanism becomes transparent and simple in the framework of the natural orbitals formalism.We project the active natural orbital respectively into real space and momentum space to characterize its structure.We conilrm the spin-momentum locking property of the edge states based on the occupancy of a Bloch state on the edge to which the impurity couples.Furthermore,we study the dynamical property of the active natural orbital represented by the local density of states,from which we observe the Kondo resonance peak.  相似文献   

4.
The dynamics of impurity spin contained by nonmagnetic host metal is investigated theoretically. The pseudofermion representation proposed byAbrikosov is applied to impurity spin. The calculations are carried out keeping only the leading logarithmic terms in any order of the perturbation theory. This approximation is adequate only above the Kondo temperature. Abrikosov's method is slightly modified to treat the spin dynamics. The real and the imaginary part of the pseudofermion self-energy is calculated. The imaginary part of the self-energy satisfies a simple relation which holds between the electron and pseudofermion self-energies. The decrease in the effective gyromagnetic factor is determined, which shows how the spin compensated state begins to form at low temperature. The first terms of the power series of the static susceptibility calculated from the pseudofermion Green function are in agreement with the results of the previous perturbative calculations given by e.g.Yosida andOkiji. The spectral function of the pseudofermion propagator is discussed in details. It has a long tail at large positive energies and satisfies the sum rule \(\int\limits_{{}^\_\infty }^\infty {d\omega \rho (\omega ) = 1} \) . The dynamic susceptibility and other physical quantities will be presented in the second part of this paper.  相似文献   

5.
Yi-Jie Wang 《中国物理 B》2022,31(9):97305-097305
A systematic study is performed on time-dependent dynamic transport characteristics of a side-coupled double-quantum-impurity system based on the hierarchical equations of motion. It is found that the transport current behaves like a single quantum dot when the coupling strength is low during tunneling or Coulomb coupling. For the case of only tunneling transition, the dynamic current oscillates due to the temporal coherence of the electron tunneling device. The oscillation frequency of the transport current is related to the step voltage applied by the lead, while temperature $T$, electron--electron interaction $U$ and the bandwidth $W$ have little influence. The amplitude of the current oscillation exists in positive correlation with $W$ and negative correlation with $U$. With the increase in coupling $t_{12}$ between impurities, the ground state of the system changes from a Kondo singlet of one impurity to a spin singlet of two impurities. Moreover, lowering the temperature could promote the Kondo effect to intensify the oscillation of the dynamic current. When only the Coulomb transition is coupled, it is found that the two split-off Hubbard peaks move upward and have different interference effects on the Kondo peak at the Fermi surface with the increase in $U_{12}$, from the dynamics point of view.  相似文献   

6.
We review analytical and numerical results derived from the Bethe ansatz solution of the n-channel Kondo model of arbitrary spin S as a function of temperature, external field, impurity spin S and the number of channels n. Three situations have to be distinguished: (i) If n = 2S the conduction electrons exactly compensate the impurity spin into a singlet at low temperatures, (ii) if n < 2S the impurity spin is only partially compensated (undercompensated), and (iii) if n > 2S the impurity spin is said to be overcompensated giving rise to critical behaviour. The results are discussed in the context of magnetic impurities, e.g. Fe, Cr and Tm in simple metals, the quadrupolar Kondo effect, an impurity spin embedded in the Takhtajan-Babujian Heisenberg model and electron assisted-tunnelling of an atom in a double-well potential.  相似文献   

7.
We consider a magnetic impurity coupled to both fermionic quasiparticles with a pseudogap density of states and bosonic spin fluctuations. Using renormalization group and large-N calculations we investigate the phase diagram of the resulting Fermi-Bose Kondo model. We show that the Kondo temperature is strongly reduced by low-energy spin fluctuations, and make connections to experiments in cuprate superconductors. Furthermore, we derive an exact exponent for the critical behavior of the conduction electron T matrix, and propose our findings to be relevant for certain scenarios of local quantum criticality in heavy-fermion metals.  相似文献   

8.
We study a one-orbital Anderson impurity in a two-dimensional electron bath with Rashba spin-orbit interactions in the Kondo regime. The spin SU(2) symmetry-breaking term couples the impurity to a two-band electron gas. A Schrieffer-Wolff transformation shows the existence of the Dzyaloshinsky-Moriya interaction away from the particle-hole symmetric impurity state. A renormalization group analysis reveals a two-channel Kondo model with ferro- and antiferromagnetic couplings. The parity-breaking Dzyaloshinsky-Moriya term renormalizes the antiferromagnetic Kondo coupling with an exponential enhancement of the Kondo temperature.  相似文献   

9.
The low-energy physics of a spin- Kondo impurity in a gapless host, in which the density of band states ρ0(ε)=|ε|r/(|ε|rr) vanishes at the Fermi level ε=0, is studied by the Bethe ansatz. It is shown that the growth of the parameter Γr=βg−1/r (where g is an exchange coupling constant) drives the ground state of the system from the Kondo regime with a screened impurity spin to the Anderson regime, where the impurity spin is unscreened. However, in a weak magnetic field H, the impurity spin exceeds its free value, , due to a strong coupling to a band.  相似文献   

10.
We have systematically investigated the global phase diagram for Li{x}M{y}HfNCl (M: molecule), demonstrating the independent controllability of carrier density x and interlayer spacing d. In LixHfNCl, the superconducting phase with almost constant T{c} of 20 K prevails for 0.15相似文献   

11.
We investigate the physics of a magnetic impurity with spin 1/2 in a correlated metallic host. Describing the band by a Hubbard Hamiltonian, the problem is analyzed using dynamical mean-field theory in combination with Wilson's nonperturbative numerical renormalization group. We present results for the single-particle density of states and the dynamical spin susceptibility at zero temperature. New spectral features (side peaks) are found which should be observable experimentally. In addition, we find a general enhancement of the Kondo scale due to correlations. Nevertheless, in the metallic phase, the Kondo scale always vanishes exponentially in the limit of small hybridization.  相似文献   

12.
牛鹏斌  王强  聂一行 《中国物理 B》2013,22(2):27307-027307
The transport properties of an artificial single-molecule magnet based on a CdTe quantum dot doped with a single Mn+2 ion(S=5/2) are investigated by the non-equilibrium Green function method.We consider a minimal model where the Mn-hole exchange coupling is strongly anisotropic so that spin-flip is suppressed and the impurity spin S and a hole spin s entering the quantum dot are coupled into spin pair states with(2S+1) sublevels.In the sequential tunneling regime,the differential conductance exhibits(2S+1) possible peaks,corresponding to resonance tunneling via(2S+1) sublevels.At low temperature,Kondo physics dominates transport and(2S+1) Kondo peaks occur in the local density of states and conductance.These peaks originate from the spin-singlet state formed by the holes in the leads and on the dot via higher-order processes and are related to the parallel and antiparallel spin pair states.  相似文献   

13.
14.
We investigate the scanning tunneling spectroscopy (STS) of a two-orbital Anderson impurity adsorbed on a metallic surface by using the numerical renormalization group (NRG) method. The density of state of magnetic impurity and the local conduction electron are calculated. We obtain the Fano resonance line shape in the STM conductance at zero temperature. For the impurity atom with antiferromagnetic inter-orbital exchange interaction and a spin singlet ground state, we show that a dip in the STM spectra around zero bias voltage regime and side peaks of spin excitation can be observed. The spin excitation energy is proportional to the exchange interaction strength. As the exchange interaction is ferromagnetic, the underscreened Kondo effect dominates the low energy properties of this system, and it gives rise to drastically different STM spectra as compared with the spin singlet case.  相似文献   

15.
The correlation of a magnetic impurity spin with the spin density of the conduction electrons in a dilute magnetic alloy is calculated non-perturbationally on the basis of the Nagaoka theory. It is shown that there are anomalies due to the Kondo effect in the long range behaviour of this correlation which contradicts the bound state interpretation of the Kondo effect. The most interesting detail is the appearance of a non-oscillating contribution to the correlation.  相似文献   

16.
We consider spin-1/2 fermions of mass m with interactions near the unitary limit. In an applied periodic potential of amplitude V and period a_{L}, and with a density of an even integer number of fermions per unit cell, there is a second-order quantum phase transition between superfluid and insulating ground states at a critical V=V_{c}. We compute the universal ratio V_{c}ma_{L};{2}/variant Planck's over 2pi;{2} at N=infinity in a model with Sp(2N) spin symmetry. The insulator interpolates between a band insulator of fermions and a Mott insulator of fermion pairs. We discuss implications for recent experiments.  相似文献   

17.
We consider electrons confined to a quantum dot interacting antiferromagnetically with a spin-1 / 2 Kondo impurity. The electrons also interact among themselves ferromagnetically with a dimensionless coupling J , where J =1 denotes the bulk Stoner transition. We show that as J approaches 1 there is a regime with enhanced Kondo correlations, followed by one where the Kondo effect is destroyed and impurity is spin polarized opposite to the dot electrons. The most striking signature of the first, Stoner-enhanced Kondo regime is that a Zeeman field increases the Kondo scale, in contrast to the case for noninteracting dot electrons. Implications for experiments are discussed.  相似文献   

18.
We have performed spin-resolved measurements on a Kondo impurity in the presence of RKKY-type exchange coupling. By placing manganese phthalocyanine (MnPc) molecules on Fe-supported Pb islands, a Kondo system is devised which is exchange coupled to a magnetic substrate via conduction electrons in Pb, inducing spin splitting of the Kondo resonance. The spin-polarized nature of the split Kondo resonance and a spin filter effect induced by spin-flip inelastic electron tunneling are revealed by spin-polarized scanning tunneling microscopy and spectroscopy.  相似文献   

19.
Zhen-Zhen Huang 《中国物理 B》2022,31(10):107101-107101
We study the Kondo screening of a spin-1/2 magnetic impurity coupled to a superconductor, which is fabricated by combination of an s-wave superconductor, a ferromagnet and a semiconductor with Rashba spin—orbit coupling (RSOC). The proximity induced superconducting states include the s-wave and p-wave pairing components with the aids of RSOC, and the ferromagnet induces a Zeeman field which removes the spin degeneracy of the quasiparticles in the triplet states. Thus, the Kondo screening of magnetic impurity involves the orbital degrees of freedom, and is also affected by the Zeeman field. Using the variational method, we calculate the binding energy and the spin—spin correlation between the magnetic impurity and the electrons in the coexisting s-wave and p-wave pairing states. We find that Kondo singlet forms more easily with stronger RSOC, but Zeeman field in general decreases the binding energy. The spin—spin correlation decays fast in the vicinity of the magnetic impurity. Due to the RSOC, the spatial spin—spin correlation becomes highly anisotropic, and the Zeeman field can induce extra asymmetry to the off-diagonal components of the spin—spin correlation. Our study can offer some insights into the studies of extrinsic topological superconductors fabricated from the hybrid structures containing chains of magnetic impurities.  相似文献   

20.
We consider a heterostructure of a metal and a paramagnetic Mott insulator using an adaptation of dynamical mean-field theory to describe inhomogeneous systems. The metal can penetrate into the insulator via the Kondo effect. We investigate the scaling properties of the metal-insulator interface close to the critical point of the Mott insulator. At criticality, the quasiparticle weight decays as 1/x;{2} with distance x from the metal within our mean-field theory. Our numerical results (using the numerical renormalization group as an impurity solver) show that the prefactor of this power law is extremely small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号