首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report the vibrationally mediated photodissociation dynamics of C2H4+ excited through the B2Ag state. Vibrational state-selected ions were prepared by two-photon resonant, three-photon ionization of ethylene via (pi, 3s) and (pi, 3p) Rydberg intermediate states in the wavelength range 298-349 nm. Absorption of a fourth photon led to dissociation of the cation, and images of the product ions C2H3+ and C2H2+ were simultaneously recorded using reflectron multimass velocity map imaging. Analysis of the multimass images yielded, with high precision, both the total translational energy distributions for the two dissociation channels and the branching between them as a function of excitation energy. The dissociation of ions that were initially prepared with torsional excitation exceeding the barrier to planarity in the cation ground state consistently gave enhanced branching to the H elimination channel. The results are discussed in terms of the influence of the initial state preparation on the competition between the internal conversion to the ground state and to the first excited state.  相似文献   

3.
A new imaging technique, reflectron multimass velocity map ion imaging, is used to study the vibrationally mediated photodissociation dynamics in the ethylene cation. The cation ground electronic state is prepared in specific vibrational levels by two-photon resonant, three-photon ionization via vibronic bands of (pi, nf) Rydberg states in the vicinity of the ionization potential of ethylene, then photodissociated through the (B 2A(g)) excited state. We simultaneously record spatially resolved images of parent C2H4+ ions as well as photofragment C2H3+ and C2H2+ ions originating in dissociation from the vibronic excitations in two distinct bands, 7f 4(0)2 and 8f 0(0)0, at roughly the same total energy. By analyzing the images, we directly obtain the total translation energy distributions for the two dissociation channels and the branching between them. The results show that there exist differences for competitive dissociation pathways between H and H2 elimination from C2H4+ depending on the vibronic preparation used, i.e., on the vibrational excitation in the ground state of the cation prior to photodissociation. Our findings are discussed in terms of the possible influence of the torsional excitation on competition between direct dissociation, isomerization, and radiationless transitions through conical intersections among the numerous electronic states that participate in the dissociation.  相似文献   

4.
Velocity map ion imaging of the H atoms formed in the photodissociation of vibrationally excited ammonia molecules measures the extent of adiabatic and nonadiabatic dissociation for different vibrations in the electronically excited state. Decomposition of molecules with an excited symmetric N-H stretch produces primarily ground state NH(2) along with a H atom. The kinetic energy release distribution is qualitatively similar to the ones from dissociation of ammonia excited to the electronic origin or to several different levels of the bending vibration and umbrella vibration. The situation is very different for electronically excited molecules containing a quantum of antisymmetric N-H stretch. Decomposition from that state produces almost solely electronically excited NH(2)*, avoiding the conical intersection between the excited state and ground state surfaces. These rotationally resolved measurements agree with our previous inferences from lower resolution Doppler profile measurements. The production of NH(2)* suggests that the antisymmetric stretching excitation in the electronically excited molecule carries it away from the conical intersection that other vibrational states access.  相似文献   

5.
We measured angular-anisotropy parameters beta(E(t)) of fragments from photolysis of ethene and four isotopic variants at 157 nm using photo-fragment translational spectroscopy and selective photoionization. The averaged beta value of products ranges from -0.17 to 0.10, depending on dissociation pathways. Angular distributions of atomic hydrogen produced from C(2)H(4) and C(2)D(4) are isotropic. For dissociation into C(2)H(2) + H(2), beta has a small negative value whereas dissociation into C(2)D(2) + D(2) has an isotropic angular distribution. The photolysis of dideuterated ethene reveals site and isotopic effects on the angular distributions of products; products H(2), HD, and D(2) from photolysis of 1,1-CH(2)CD(2) have negative, nearly zero, and positive values of beta, respectively. Molecular hydrogen from photolysis of 1,2-cis-CHDCHD has a negative beta value and the anisotropy has a trend D(2) > H(2) > HD. Photolysis of 1,2-trans-CHDCDH produced a result similar to photolysis of 1,2-cis-CHDCHD for the angular anisotropy of molecular hydrogen except slightly more isotropic. A calculation of optimized geometries of ethene in the ground electronic state and pertinent transition structures enables a qualitative interpretation of the site and isotopic effects on the angular anisotropy of products. We deduce that the photoexcited state of ethene at 157 nm has a major character (1)B(1u) that produces a transition dipolar moment parallel to the C=C bond.  相似文献   

6.
The first overtone region of the C-H stretching vibration of 1,2-trans-d(2)-ethene (HDC=CDH) was monitored via jet-cooled action spectroscopy and room temperature photoacoustic spectroscopy. The spectra include a strong band, which we assigned as the nu(1)+nu(9) C-H stretch vibration, and five additional bands related to transitions to coupled states. The spectral features were modeled in terms of a six-state deperturbation analysis, revealing the energies of the zero-order states and the relatively strong couplings between the initially excited nu(1)+nu(9) state and the doorway states. Considering these energies and the fundamental frequencies of 1,2-trans-d(2)-ethene and presuming that only low-order resonances are involved in the couplings enabled the assignment of the states. The analysis also allowed obtaining insight on energy flow and to find out that the energy oscillations between the C-H stretch state and the doorway states occur on a subpicosecond time scale.  相似文献   

7.
The room-temperature vibrational overtone spectra of the formic acid isotopomers HCOOH and DCOOH have been recorded in the third and fourth OH-stretching overtone regions with intracavity laser photoacoustic spectroscopy. Resonance coupling between the OH- and CH-stretching vibrations in HCOOH is clearly identified in the fourth overtone region. This is an example of strong coupling across bonds. In the third overtone region, no resonance is observed. Vibrational energies and intensities of the OH- and CH-stretching overtones and combination bands have been calculated with an anharmonic oscillator local mode model. The pure OH-stretching bright state carries almost all the intensity prior to resonance coupling.  相似文献   

8.
Absorption spectra of silane in the region of the first overtone of the Si-H stretch vibration have been recorded in a seeded supersonic jet expansion by cavity ring-down spectroscopy as well as in a static gas cell at room temperature by photoacoustic spectroscopy. Spectral simplification due to strong rotational cooling in the jet expansion enables us to clearly resolve and assign the rovibrational transitions of the (2000) and (1100) bands of the three isotopologues, (28)SiH(4), (29)SiH(4), and (30)SiH(4), in their natural isotopic abundance. Interconversion between different nuclear spin species of SiH(4) is found to be absent during the jet expansion. Isotope shifts for (29)SiH(4) and (30)SiH(4) relative to (28)SiH(4) are measured and found to be suitable for selective vibrational excitation of any of three silane isotopologues by pulsed laser excitation in a jet expansion.  相似文献   

9.
Vibrationally mediated photodissociation and photoacoustic (PA) spectroscopy were employed for studying the intramolecular dynamics of propyne initially excited to the first through fourth overtone of methyl C-H stretching modes. Room-temperature PA and jet-cooled action spectra, monitoring the absorption of the parent and the yield of the ensuing H photofragments, respectively, were obtained. The PA spectra exhibit mainly broad features, while the action spectra, due to inhomogeneous structure reduction, expose multiple peaks of recognizable shapes in the differing overtone manifolds. Symmetric rotor simulations of the band contours of the action spectra allowed retrieving of band origins and linewidths. The linewidths of the bands in each manifold enabled estimates for energy redistribution times out of the corresponding states to the bath states, the times ranging from 18+/-6 ps for two quanta of C-H excitation to subpicosecond for five quanta. The data were also analyzed in terms of a normal-mode model and a joint local-/normal-mode model. These models enabled determination of harmonic frequencies, anharmonicities, and interaction parameters reproducing the observed data in all monitored regions and provided spectral assignments. The measured Doppler profiles were well fitted by Gaussians with widths suggesting low average translational energies for the released H photofragments. These low energies and their similarities to those for dissociation of propyne isotopomers preexcited to acetylenic C-H stretches were ascribed to an indirect dissociation process occurring after internal conversion to the ground electronic state and isomerization to allene.  相似文献   

10.
The DOOO radical has been produced by three-body association between OD and O2 in a supersonic free-jet expansion and investigated using action spectroscopy, an IR-UV double-resonance technique. Partially rotationally structured bands observed at 2635.06 and 5182.42 cm(-1) are assigned to the OD stretch fundamental (nu(OD)) and overtone (2nu(OD)), respectively, of the trans-DOOO radical. Unstructured bands observed in both spectral regions are assigned to cis-DOOO. Nascent OD X(2)Pi product state distributions following vibrational predissociation appear to be nearly statistical with respect to the degree of rotational excitation, but display a marked propensity for Pi(A') Lambda-doublets, which is interpreted as a signature of a planar dissociation. The energetically highest open OD X(2)Pi product channel implies an upper limit dissociation energy D0 < or = 1856 cm(-1) or 5.31 kcal mol(-1). This value allows refinement of the upper limit D0 of the atmospherically important HOOO isotopomer, suggesting that it is marginally less stable than previously thought.  相似文献   

11.
12.
Methylamine (CH3NH2) molecules, excited to vibrational states lying in the energy window of the first N–H stretch overtone, were studied by room temperature photoacoustic spectroscopy and jet-cooled action spectroscopy. Benefiting from both types of spectra and specifically from the narrowed action spectrum, a multiband structure was revealed. Simulation of the spectral contours allowed retrieving the band origins, band types and transition linewidths. The linewidths indicate that the energy redistribution occurs nonstatistically and that the 2ν10 state (antisymmetric N–H stretch) is relatively longer lived.  相似文献   

13.
The fourth overtones of the free O-H stretch of CnH2n+1OH (n = 2,3,4,6,10,14) in the neat liquid slate have been observed by a thermal-lens technique. Those frequencies in the CCl4 solution were red-shifted with increasing dilution, and this is ascribed to the formation of a weak hydrogen bond O-H·Cl.  相似文献   

14.
15.
We report the absolute absorption cross sections of the fourth vibrational O-H (5ν(OH)) overtone in acetic acid using cavity ring-down spectroscopy. For compounds that undergo photodissociation via overtone excitation, such intensity information is required to calculate atmospheric photolysis rates. The fourth vibrational overtone of acetic acid is insufficiently energetic to effect dissociation, but measurement of its cross section provides a model for other overtone transitions that can affect atmospheric photochemistry. Though gas-phase acetic acid exists in equilibrium with its dimer, this work shows that only the monomeric species contributes to the acetic acid overtone spectrum. The absorption of acetic acid monomer peaks at ~615 nm and has a peak cross section of 1.84 × 10(-24) cm(2)·molecule(-1). Between 612 and 620 nm, the integrated cross section for the acetic acid monomer is (5.23 ± 0.73) × 10(-24) cm(2)·nm·molecule(-1) or (1.38 ± 0.19) × 10(-22) cm(2)·molecule(-1)·cm(-1). This is commensurate with the integrated cross section values for the fourth O-H overtone of other species. Theoretical calculations show that there is sufficient energy for hydrogen to transition between the two oxygen atoms, which results in an overtone-induced conformational change.  相似文献   

16.
Photodissociation studies of the CH2OD radical in the region 28,000-41,000 cm(-1) (357-244 nm), which includes excitation to the 3s, 3p(x), and 3p(z) states, are reported. H and D photofragments are monitored by using resonance-enhanced multiphoton ionization (REMPI) from the onset of H formation at approximately 30,500 cm(-1) to the origin band region of the 3pz(2A")<--1 2A" transition at 41,050 cm(-1). Kinetic energy distributions P(ET) and recoil anisotropy parameters as a function of kinetic energy, beta(eff)(ET), are determined by the core sampling technique for the channels producing H and D fragments. Two dissociation channels are identified: (I) D+CH2O and (II) H+CHOD. The contribution of channel II increases monotonically as the excitation energy is increased. Based on the calculations of Hoffmann and Yarkony [J. Chem. Phys. 116, 8300 (2002)], it is concluded that conical intersections between 3s and the ground state determine the final branching ratio even when initial excitation accesses the 3px) and 3pz states. The different beta(eff) values obtained for channels I and II (-0.7 and approximately 0.0, respectively) are attributed to the different extents of out-of-plane nuclear motions in the specific couplings between 3s and the ground state (of A' and A' symmetry, respectively) that lead to each channel. The upper limit to the dissociation energy of the C-H bond, determined from P(ET), is D0(C-H)=3.4+/-0.1 eV (79+/-2 kcal/mol). Combining this value with the known heats of formation of H and CH2OD, the heat of formation of CHOD is estimated at DeltaHf(0)(CHOD)=24+/-2 kcal/mol.  相似文献   

17.
A. Held  M. Herman 《Chemical physics》1995,190(2-3):407-417
We have examined the first overtone N---H stretching region and the fundamental C---H stretching region of gas phase pyrrole (C4H5N), using high resolution Fourier transform spectra. The first overtone N---H stretch has been rotationally analysed using an asymmetric top model and was found to exhibit two separate perturbations. These perturbations produce line splittings and anomalous intensity patterns in the spectrum which are briefly discussed. Hot band transitions, one of them red-shifted and others likely to overlap the main cold transition are also discussed. Three bands observed around 3100 cm−1 were also rotationally analysed, using a symmetric top Hamiltonian, and assigbed to three of the four closely overlapping fundamentals of the C---H stretch vibrations. Evidence was obtained for the fourth expected C---H fundamental.  相似文献   

18.
We present results, which indicate that Pd-mediated C-H bond activation can be used under mild conditions for the remote functionalization of C-4 methyl groups of molecules with different terpenoid-like skeletons containing six- or seven-membered A rings. This procedure has allowed us to complete a novel strategy for the synthesis of γ-dioxygenated terpenoids in three stages: (i) selective epoxidation of commercial polyenes, (ii) titanium(III)-catalyzed cyclization of epoxypolyprenes, and (iii) Pd-mediated remote functionalization of equatorial methyl groups. This strategy has proved to be useful for the synthesis of the natural labdane rostratone (1).  相似文献   

19.
A state-to-state dynamics study was performed at a collision energy of 1.53 eV to analyze the effect of the C-H stretch mode excitation on the dynamics of the gas-phase H+CHD3 reaction, which can evolve along two channels, H-abstraction, CD3+H2, and D-abstraction, CHD2+HD. Quasi-classical trajectory calculations were performed on an analytical potential energy surface constructed previously by our group. First, strong coupling between different vibrational modes in the entry channel was observed; i.e., the reaction is non-adiabatic. Second, we found that the C-H stretch mode excitation has little influence on the product rotational distributions for both channels, and on the vibrational distribution for the CD3+H2 channel. However, it has significant influence on the product vibrational distribution for the CHD2+HD channel, where the C-H stretch excitation is maintained in the products, i.e., the reaction shows mode selectivity, reproducing the experimental evidence. Third, the C-H stretch excitation by one quantum increases the reactivity of the vibrational ground-state, in agreement with experiment. Fourth, the state-to-state angular distributions of the CD3 and CHD2 products are reported, finding that for the reactant ground-state the products are practically sideways, whereas the C-H excitation yields a more forward scattering.  相似文献   

20.
Through the study of photodissociation events in the CS(2) molecule that originate in various selected vibrational modes, but terminate in the same final predissociation state, we looked for the evidence that photodissociation processes can depend on the initial conditions. Such dependence would not occur within RRKM theory, because of its statistical assumptions. The experimental results were compared with trajectory calculations in normal mode coordinates, in which initial conditions were given in terms of coordinates and momenta. We have found that the photodissociation rate for events originating in the combination nu(1), nu(2) mode is higher than that for events from the pure nu(2) mode, and shows a large variation along the vibrational progression. The experimental observations agree with the trajectory calculations. In addition, the trajectory calculations predict that photodissociation events initiated at small values of the vibrational coordinates result in larger dissociation rates at low excess energy above the dissociation limit, while events from large values of the coordinates result in larger dissociation rates at high excess energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号