首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report some unusual structural transitions upon the addition of an amphiphilic biopolymer to unilamellar surfactant vesicles. The polymer is a hydrophobically modified chitosan and it embeds its hydrophobes in vesicle bilayers. We study vesicle-polymer mixtures using small-angle neutron scattering (SANS) and cryotransmission electron microscopy (cryo-TEM). When low amounts of the polymer are added to unilamellar vesicles of ca. 120 nm diameter, the vesicle size decreases by about 50%. Upon further addition of polymer, lamellar peaks are observed in the SANS spectra at high scattering vectors. We show that these spectra correspond to a co-existence of unilamellar and bilamellar vesicles. The transition to bilamellar vesicles as well as the changes in unilamellar vesicle size are further confirmed by cryo-TEM. A mechanism for the polymer-induced transitions in vesicle morphology is proposed.  相似文献   

2.
蜂毒肽作为一种广谱抗菌肽已经得到广泛认知,用蜂毒肽构建载药体系攻击癌细胞研究正在兴起.基于仿生物膜模型探索其破坏机理,可以避免潜在活性细胞过程的影响.在此,我们选用细胞尺寸的单层巨囊泡膜模型,可在光学显微镜下直接观察和操作,获得仿正常细胞膜和仿癌细胞膜在不同蜂毒肽浓度刺激下的响应.研究得出,低浓度蜂毒肽诱导囊泡泄露实验表明中性磷脂囊泡以孔模式为主泄露,负电性磷脂囊泡以爆裂模式为主泄露;高浓度蜂毒肽诱导囊泡泄露实验表明负电性磷脂相较于中性磷脂可延迟蜂毒肽作用效果;蜂毒肽色氨酸残基荧光光谱表明囊泡膜表面蜂毒肽吸附量以及泄露模式依赖于磷脂组分.此外,推断了蜂毒肽对不同组分磷脂膜的破坏作用模型.研究为蜂毒肽在肿瘤细胞的作用机制及其衍生物的优化设计提供参考.  相似文献   

3.
Xin Wang 《中国物理 B》2023,32(1):16201-016201
Natural and artificially prepared nanorods' surfaces have proved to have good bactericidal effect and self-cleaning property. In order to investigate whether nanorods can kill the enveloped virus, like destroying bacterial cell, we study the interaction between nanorods and virus envelope by establishing the models of nanorods with different sizes as well as the planar membrane and vesicle under the Dry Martini force field of molecular dynamics simulation. The results show that owing to the van der Waals attraction between nanorods and the tail hydrocarbon chain groups of phospholipid molecules, the phospholipid molecules on virus envelope are adsorbed to nanorods on a large scale. This process will increase the surface tension of lipid membrane and reduce the order of lipid molecules, resulting in irreparable damage to planar lipid membrane. Nanorods with different diameters have different effects on vesicle envelope, the larger the diameter of nanorod, the weaker the van der Waals effect on the unit cross-sectional area is and the smaller the degree of vesicle deformation. There is synergy between the nanorods in the nanorod array, which can enhance the speed and scale of lipid adsorption. The vesicle adsorbed in the array are difficult to desorb, and even if desorbed, vesicle will be seriously damaged. The deformation rate of the vesicle adsorbed in the nanorod array exceeds 100%, implying that the nanorod array has a strong destructive effect on the vesicle. This preliminarily proves the feasibility of nanorod array on a surface against enveloped virus, and provides a reference for the design of corresponding nanorods surface.  相似文献   

4.
Fusion of bilayer membranes is studied via dissipative particle dynamics (DPD) simulations. A new set of DPD parameters is introduced which leads to an energy barrier for flips of lipid molecules between adhering membranes. A large number of fusion events is monitored for a vesicle in contact with a planar membrane. Several time scales of the fusion process are found to depend exponentially on the membrane tension. This implies an energy barrier of about 10k(B)T for intermembrane flips and a second size-dependent barrier for the nucleation of a small hemifused membrane patch.  相似文献   

5.
Qi Zhou 《中国物理 B》2022,31(9):98701-098701
Osmotic pressure can break the fluid balance between intracellular and extracellular solutions. In hypo-osmotic solution, water molecules, which transfer into the cell and burst, are driven by the concentration difference of solute across the semi-permeable membrane. The complicated dynamic processes of intermittent bursts have been previously observed. However, the underlying physical mechanism has yet to be thoroughly explored and analyzed. Here, the intermittent release of inclusion in giant unilamellar vesicles was investigated quantitatively, applying the combination of experimental and theoretical methods in the hypo-osmotic medium. Experimentally, we adopted a highly sensitive electron multiplying charge-coupled device to acquire intermittent dynamic images. Notably, the component of the vesicle phospholipids affected the stretch velocity, and the prepared solution of vesicles adjusted the release time. Theoretically, we chose equations and numerical simulations to quantify the dynamic process in phases and explored the influences of physical parameters such as bilayer permeability and solution viscosity on the process. It was concluded that the time taken to achieve the balance of giant unilamellar vesicles was highly dependent on the molecular structure of the lipid. The pore lifetime was strongly related to the internal solution environment of giant unilamellar vesicles. The vesicles prepared in viscous solution were able to visualize long-lived pores. Furthermore, the line tension was measured quantitatively by the release velocity of inclusion, which was of the same order of magnitude as the theoretical simulation. In all, the experimental values well matched the theoretical values. Our investigation clarified the physical regulatory mechanism of intermittent pore formation and inclusion release, which provides an important reference for the development of novel technologies such as gene therapy based on transmembrane transport as well as controlled drug delivery based on liposomes.  相似文献   

6.
A method has been developed for calculating the expected fluorescence lifetime of the DPH p PC probe distributed between different membrane environments. We show how this method can be used to distinguish between lipid transfer and fusion between large unilamellar vesicles occurring in the presence of poly(ethylene glycol) (PEG). This application of the calculation took into consideration the heterogeneity of microenvironments experienced by the probe in a sample containing vesicle aggregates of different sizes. Assuming that the aggregate size distribution was a delta function of the aggregate size, comparison of the calculated and observed lifetimes yielded an estimate of the vesicle aggregate size. For vesicles of varying compositions in the presence of dehydrating concentrations of PEG, this method suggested that only small aggreggates formed. For vesicles that could be demonstrated by other means not to have fused, the data were consistent with lipid transfer occurring only between the outer leaflets of two to four vesicles, even at high PEG concentrations. For vesicles that could be demonstrated to fuse by contents mixing and size changes, the fluorescence lifetime data were consistent with lipid transfer between both the inner and the outer leaflets of two to four fused vesicles. At very high PEG concentrations, where extensive rupture and large, multilamellar products were previously observed, the lifetime data were consistent with much more extensive lipid transfer within larger aggregates. The agreement of predictions made on the basis of lifetime measurements with other observations attests to the validity of the fluorescence lifetime method. In addition, the model and data presented here provide evidence that fusion occurs between small numbers of PEG-aggregated vesicles before the removal of PEG.  相似文献   

7.
Yi X  Shi X  Gao H 《Physical review letters》2011,107(9):098101
A fundamental understanding of cell-nanomaterial interaction is of essential importance to nanomedicine and safe applications of nanotechnology. Here we investigate the adhesive wrapping of a soft elastic vesicle by a lipid membrane. We show that there exist a maximum of five distinct wrapping phases based on the stability of full wrapping, partial wrapping, and no wrapping states. The wrapping phases depend on the vesicle size, adhesion energy, surface tension of membrane, and bending rigidity ratio between vesicle and membrane. These results are of immediate interest to the study of vesicular transport and endocytosis or phagocytosis of elastic particles into cells.  相似文献   

8.
Heterogeneities in the cell membrane due to coexisting lipid phases have been conjectured to play a major functional role in cell signaling and membrane trafficking. Thereby the material properties of multiphase systems, such as the line tension and the bending moduli, are crucially involved in the kinetics and the asymptotic behavior of phase separation. In this Letter we present a combined analytical and experimental approach to determine the properties of phase-separated vesicle systems. First we develop an analytical model for the vesicle shape of weakly budded biphasic vesicles. Subsequently experimental data on vesicle shape and membrane fluctuations are taken and compared to the model. The parameters obtained set limits for the size and stability of nanodomains in the plasma membrane of living cells.  相似文献   

9.
We present experimental results on the relaxation dynamics of vesicles subjected to a time-dependent elongation flow. We observed and characterized a new instability, which results in the formation of higher-order modes of the vesicle shape (wrinkles), after a switch in the direction of the velocity gradient. This surprising generation of membrane wrinkles can be explained by the appearance of a negative surface tension during the vesicle deflation, which tunes itself to alternating stress. Moreover, the formation of buds in the vesicle membrane was observed in the vicinity of the dynamical transition point.  相似文献   

10.
Recent experiments by Kantsler et al. [Phys. Rev. Lett. 99, 178102 (2007)10.1103/PhysRevLett.99.178102] have shown that the relaxational dynamics of a vesicle in external elongation flow is accompanied by the formation of wrinkles on a membrane. Motivated by these experiments we present a theory describing the dynamics of a wrinkled membrane. The formation of wrinkles is related to the dynamical instability induced by negative surface tension of the membrane. For quasispherical vesicles we perform analytical study of the wrinkle structure dynamics. We derive the expression for the instability threshold and identify three stages of the dynamics. The scaling laws for the temporal evolution of wrinkling wavelength and surface tension are established, confirmed numerically, and compared to experimental results.  相似文献   

11.
The adhesion of fluid vesicles at chemically structured substrates is studied theoretically via Monte Carlo simulations. The substrate surface is planar and repels the vesicle membrane apart from a single surface domain γ , which strongly attracts this membrane. If the vesicle is larger than the attractive γ domain, the spreading of the vesicle onto the substrate is restricted by the size of this surface domain. Once the contact line of the adhering vesicle has reached the boundaries of the γ domain, further deflation of the vesicle leads to a regime of low membrane tension with pronounced shape fluctuations, which are now governed by the bending rigidity. For a circular γ domain and a small bending rigidity, the membrane oscillates strongly around an average spherical cap shape. If such a vesicle is deflated, the contact area increases or decreases with increasing osmotic pressure, depending on the relative size of the vesicle and the circular γ domain. The lateral localization of the vesicle's center of mass by such a domain is optimal for a certain domain radius, which is found to be rather independent of adhesion strength and bending rigidity. For vesicles adhering to stripe-shaped surface domains, the width of the contact area perpendicular to the stripe varies nonmonotonically with the adhesion strength.  相似文献   

12.
We calculate the stress tensor for a quasi-spherical vesicle and we thermally average it in order to obtain the actual, mechanical, surface tension t \tau of the vesicle. Both closed and poked vesicles are considered. We recover our results for t \tau by differentiating the free energy with respect to the proper projected area. We show that t \tau may become negative well before the transition to oblate shapes and that it may reach quite large negative values in the case of small vesicles. This implies that spherical vesicles may have an inner pressure lower than the outer one.  相似文献   

13.
The size polydispersity distribution of synaptic vesicles (SVs) is characterized under quasi-physiological conditions by dynamic light scattering (DLS). Highly purified fractions of SVs obtained from rat brain still contain a small amount of larger contaminant structures, which can be quantified by DLS and further reduced by asymmetric-flow field-flow (AFFF) fractionation. The intensity autocorrelation functions g 2(t \tau) recorded from these samples are analyzed by a constrained regularization method as well as by an alternative direct modeling approach. The results are in quantitative agreement with the polydispersity obtained from cryogenic electron microscopy of vitrified SVs. Next, different vesicle fusion assays based on samples composed of SVs and small unilamellar proteoliposomes with the fusion proteins syntaxin 1 and SNAP-25A are characterized by DLS. The size increase of the proteoliposomes due to SNARE-dependent fusion with SVs is quantified by DLS under quasi-physiological conditions.  相似文献   

14.
Summary In the present study of fusion between lipid vesicles performed by thermomechanical analysis, isothermal volume variation has been shown to be a reliable tool to follow these kinetics without introducing perturbing probes. In fact, the fusion process is accompanied by bilayer strain release which causes an overall volume decrease of the fused vesicles. Volumetric variations induced by side processes, such as adhesion or ion binding onto the vesicle surface, were accounted for in our measurements. Moreover, by the same technique we followed segregation effects of the membrane lipid components in mixed vesicles. The systems examined were neutral and anionic phospholipids containing vesicles. The role of temperature, vesicle size, lipid composition as well as the influence of different cations were also investigated.  相似文献   

15.
马丽  贺小龙  李明  胡书新 《物理学报》2018,67(14):148703-148703
Bid蛋白是仅有BH3结构域的Bcl-2家族蛋白,在溶酶体膜透化以及线粒体外膜透化引发的细胞凋亡过程中起着非常重要的调控作用,但是Bid蛋白与生物膜之间的相互作用导致脂膜透化的确切机制尚不十分清楚.本文利用激光扫描共聚焦显微成像技术及基于氧化石墨烯表面诱导荧光衰逝的单分子荧光技术,分别从单囊泡及单分子水平对tBid蛋白与磷脂膜之间的相互作用进行了系统的研究.结果表明,tBid蛋白在膜上聚集后可引起脂膜的透化,且脂膜透化的发生源于聚集体中一些tBid蛋白更深入地插入了脂膜中.  相似文献   

16.
The hemifused state on the pathway to membrane fusion   总被引:1,自引:0,他引:1  
Fusion of compartments enclosed by membrane bilayers enables secretion and other vital cellular processes and is widely studied in model synthetic membrane systems. Experiments suggest the fusion pathway passes through a hemifused intermediate where only outer monolayers are fused. Here we show membrane tension and divalent cations drive vesicles to hemifused equilibrium with expanded hemifusion diaphragms (HDs) where inner monolayers engage. Predicted HD sizes agree with recent measurements of Nikolaus et al. [Biophys. J. 98, 1192 (2010).]. The fusion pathway is completed by HD lysis provided HD tension is sufficiently high.  相似文献   

17.
We show how to greatly improve precision when determining bending elasticity of giant unilamellar vesicles. Taking advantage of the well-known quasi-spherical model of liposome flickering, we analyze the full probability distributions of the configurational fluctuations instead of limiting the analysis to the second moment measurements only as usually done in previously published works. This leads to objective criteria to reject vesicles that do not behave according to the model. As a result, the confidence in the bending elasticity determination of individual vesicles that fit the model is improved and, consequently, the reproducibility of this measurement for a given membrane system. This approach uncovers new possibilities for bending elasticity studies like detection of minute influences by solutes in the buffer or into the membrane. In the same way, we are now able to detect the inhomogeneous behavior of giant vesicle systems such as the hazardous production of peroxide in bilayers containing fluorescent dyes.  相似文献   

18.
The kinetics of unilamellar vesicle fusion induced by the addition of dimethyl sulfoxide (DMSO) and diethyl sulfoxide (DESO) with mole fractions of 0.1 and 0.2 is studied in the liquid-crystal phase using small-angle neutron scattering. Multilamellar vesicles formed due to the partial fusion of unilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphadylcholine (DMPC) with the addition of DMSO (ХDMSO = 0.1, 0.2) and DESO (ХDESO = 0.2) are stable for a long time. The cooling–heating process does not affect the stability of the formed systems. The presence of DMSO and DESO with a mole fraction of 0.2 leads to disappearance of the ripple phase. The addition of DESO to the unilamellar vesicles of DMPC in D2O with a mole fraction of 0.1 does not affect the structure of unilamellar vesicles for 5–15 minutes after adding the sulfoxide in the liquid-crystal phase. Three hours later, a stable system consisting of unilamellar vesicles with a lipid bilayer thickness of 27.3(2) Å and multilamellar vesicles with a repeat distance of d = 43.6(2) Å is formed. During cooling, multilamellar vesicles are destroyed in the region of the main phase transition (T'm = 24.8(9)°C for the investigated system) and unilamellar vesicles are formed.  相似文献   

19.
20.
We identify a class of composite membranes: fluid bilayers coupled to an elastic meshwork that are such that the meshwork's energy is a function F(el)[A(xi)] not of the real microscopic membrane area A, but of a smoothed membrane's area A(xi), which corresponds to the area of the membrane coarse grained at the mesh size xi. We show that the meshwork modifies the membrane tension sigma both below and above the scale xi, inducing a steep crossover of amplitude deltasigma=dF(el)/dA(xi). The predictions of our model account for the fluctuation spectrum of red blood cell membranes coupled to their cytoskeleton. Our results indicate that the cytoskeleton might be under extensional stress, which would provide a means to regulate available membrane areas. We also predict an observable tension jump for membranes decorated with polymer "brushes."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号