首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider transport through a single-molecule magnet strongly coupled to metallic electrodes. We demonstrate that, for a half-integer spin of the molecule, electron and spin tunneling cooperate to produce both quantum tunneling of the magnetic moment and a Kondo effect in the linear conductance. The Kondo temperature depends sensitively on the ratio of the transverse and easy-axis anisotropies in a nonmonotonic way. The magnetic symmetry of the transverse anisotropy imposes a selection rule on the total spin for the occurrence of the Kondo effect which deviates from the usual even-odd alternation.  相似文献   

2.
We report a Kondo-effect study of electron transport through a quantum dot with embedded biaxial single-molecule magnet based on slave boson mean-field theory and non-equilibrium Green-function technique. It is found the macroscopic quantum coherence of molecule-magnet results in the Kondo peak split of differential conductance due to interaction between electron and molecular magnet. It is also demonstrated that both the peak height and position can be controlled by the sweeping magnetic field and polarization of ferromagnetic electrodes. The characteristic peak split may be used to identify the macroscopic quantum coherence and develop molecule devices.  相似文献   

3.
We demonstrate that in a single molecule magnet strongly coupled to electrodes the Kondo effect involves all magnetic excitations. This Kondo effect is induced by the quantum tunneling of the magnetic moment. Importantly, the Kondo temperature TK can be much larger than the magnetic splittings. We find a strong modulation of the Kondo effect as a function of the transverse anisotropy parameter or a longitudinal magnetic field. Both for integer and half-integer spin this can be used for an accurate transport spectroscopy of the magnetic states in low magnetic fields on the order of the easy-axis anisotropy parameter. We set up a relationship between the Kondo effects for successive integer and half-integer spins.  相似文献   

4.
We report transport measurements through a single-molecule magnet, the Mn12 derivative [Mn12O12(O2C-C6H4-SAc)16(H2O)4], in a single-molecule transistor geometry. Thiol groups connect the molecule to gold electrodes that are fabricated by electromigration. Striking observations are regions of complete current suppression and excitations of negative differential conductance on the energy scale of the anisotropy barrier of the molecule. Transport calculations, taking into account the high-spin ground state and magnetic excitations of the molecule, reveal a blocking mechanism of the current involving nondegenerate spin multiplets.  相似文献   

5.
We investigate the time-dependent Kondo effect in a single-molecule magnet (SMM) strongly coupled to metallic electrodes. Describing the SMM by a Kondo model with large spin S>1/2, we analyze the underscreening of the local moment and the effect of anisotropy terms on the relaxation dynamics of the magnetization. Underscreening by single-channel Kondo processes leads to a logarithmically slow relaxation, while finite uniaxial anisotropy causes a saturation of the SMM's magnetization. Additional transverse anisotropy terms induce quantum spin tunneling and a pseudospin-1/2 Kondo effect sensitive to the spin parity.  相似文献   

6.
牛鹏斌  王强  聂一行 《中国物理 B》2013,22(2):27307-027307
The transport properties of an artificial single-molecule magnet based on a CdTe quantum dot doped with a single Mn+2 ion(S=5/2) are investigated by the non-equilibrium Green function method.We consider a minimal model where the Mn-hole exchange coupling is strongly anisotropic so that spin-flip is suppressed and the impurity spin S and a hole spin s entering the quantum dot are coupled into spin pair states with(2S+1) sublevels.In the sequential tunneling regime,the differential conductance exhibits(2S+1) possible peaks,corresponding to resonance tunneling via(2S+1) sublevels.At low temperature,Kondo physics dominates transport and(2S+1) Kondo peaks occur in the local density of states and conductance.These peaks originate from the spin-singlet state formed by the holes in the leads and on the dot via higher-order processes and are related to the parallel and antiparallel spin pair states.  相似文献   

7.
An electron transport is studied in the system that consists of a scanning tunneling microscopy, single-molecule magnet metal. Because of quantum tunneling of magnetization in a single-molecule magnet, linear response conductance exhibits stepwise behavior with increasing longitudinal field, and each step is maximized at a certain value of field sweeping speed. The conductance at each step oscillates as a function of the additional transverse magnetic field along the hard axis. A rigorous theory is presented that combines the exchange model with the Landau-Zener model.  相似文献   

8.
We adopt the nonequilibrium Green's function method to theoretically study the Kondo effect in a deformed molecule, which is treated as an electron-phonon interaction (EPI) system. The self-energy for phonon part is calculated in the standard many-body diagrammatic expansion up to the second order in EPI strength. We find that the multiple phonon-assisted Kondo satellites arise besides the usual Kondo resonance. In the antiparallel magnetic configuration the splitting of main Kondo peak and phonon-assisted satellites only happen for asymmetrical dot-lead couplings, but it is free from the symmetry for the parallel magnetic configuration. The EPI strength and vibrational frequency can enhance the spin splitting of both main Kondo and satellites. It is shown that the suppressed zero-bias Kondo resonance can be restored by applying an external magnetic field, whose magnitude is dependent on the phononic effect remarkably. Although the asymmetry in tunnel coupling has no contribution to the restoration of spin splitting of Kondo peak, it can shrink the external field needed to switch tunneling magnetoresistance ratio between large negative dip and large positive peak.  相似文献   

9.
We measure transport through gold grain quantum dots fabricated using electromigration, with magnetic impurities in the leads. A Kondo interaction is observed between dot and leads, but the presence of magnetic impurities results in a gate-dependent zero-bias conductance peak that is split due to a RKKY interaction between the spin of the dot and the static spins of the impurities. A magnetic field restores the single Kondo peak in the case of an antiferromagnetic RKKY interaction. This system provides a new platform to study Kondo and RKKY interactions in metals at the level of a single spin.  相似文献   

10.
We quantitatively describe the main features of the magnetically induced conductance modulation of a Kondo quantum dot-or chessboard pattern-in terms of a constant-interaction double quantum dot model. We show that the analogy with a double dot holds down to remarkably low magnetic fields. The analysis is extended by full 3D spin density functional calculations. Introducing an effective Kondo coupling parameter, the chessboard pattern is self-consistently computed as a function of magnetic field and electron number, which enables us to explain our experimental data quantitatively.  相似文献   

11.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.  相似文献   

12.
We report a theoretical analysis of electron transport through a quantum dot with an embedded biaxial single-molecule magnet, which is coupled to ferromagnetic electrodes of parallel and antiparallel magnet-configurations. For the antiparallel configuration of complete polarization it is shown that the originally prohibited electron transport can be opened up by the macroscopic quantum coherence of the molecular magnet, which provides a spin-flipping mechanism. The charge-current and differential conductance are controllable by variation of the magnitude and orientation of an external magnetic field, which in turn manipulates the macroscopic quantum coherence of the molecular magnet. Moreover, the transport can be switched off at particular values of the magnetic field, where the tunnel splitting is quenched by the quantum phase interference of tunnel paths.The transport current and differential conductance as functions of the electrode-polarization and magnetic field are extensively studied, which may be useful in practical applications. A new transport channel is found in the completely polarized parallel-configuration induced by the tunnel splitting of molecular magnet and resonance-peak splits of the conductance are observed in non-completely polarized configurations. 75.50.Xx Molecular magnets  相似文献   

13.
ZHU Rui 《中国物理快报》2006,23(6):1578-1580
We propose a mean field approach to the transport properties of carbon nanotube quantum dots. Quantum interaction between spin and orbital pseudo-spin degrees of freedom results in an SU(4) Kondo effect at low temperatures. By calculating the chemical potentials and the tunnelling strengths, and hence the spectral functions for different coupling constants and applied magnetic fields, we find that this exotic Kondo effect manifests as a four-peak splitting in the non-linear conductance when an axial magnetic field is applied.  相似文献   

14.
We find that Kondo resonant conductance can occur in a quantum dot in the Coulomb blockade regime with an even number of electrons N. The contacts are attached to the dot in a pillar configuration, and a magnetic field B( perpendicular) along the axis is applied. B( perpendicular) lifts the spin degeneracy of the dot energies. Usually, this prevents the system from developing the Kondo effect. Tuning B( perpendicular) to the value B(*) where levels with different total spin cross restores both the degeneracy and the Kondo effect. We analyze a dot charged with N = 2 electrons. Coupling to the contacts is antiferromagnetic due to a spin selection rule and, in the Kondo state, the charge is unchanged while the total spin on the dot is S = 1/2.  相似文献   

15.
We study quantum spin-rotation effects for a single-molecule magnet bridged between two conducting leads in the ac and dc magnetic fields. The Landau-Zener dynamics induced by the magnetic field generates mechanical torque, making the molecule to oscillate. This mechanical motion of the molecule exhibits unique features that can be detected by measuring the electronic tunneling current through the molecule.  相似文献   

16.
We study the conductance through a ring described by the Hubbard model (such as an array of quantum dots), threaded by a magnetic flux and subject to Rashba spin-orbit coupling (SOC). We develop a formalism that is able to describe the interference effects as well as the Kondo effect when the number of electrons in the ring is odd. In the Kondo regime, the SOC reduces the conductance from the unitary limit, and, in combination with the magnetic flux, the device acts as a spin polarizer.  相似文献   

17.
We have measured the differential conductance of individual multiwall carbon nanotubes. Coulomb blockade and energy level quantization are observed. The electron levels are nearly fourfold degenerate (including spin) and their evolution in magnetic field (Zeeman splitting) agrees with a g factor of 2. In zero magnetic field the sequential filling of states evolves with spin S according to S = 0-->1/2-->0.... A Kondo enhancement of the conductance is observed when the number of electrons on the tube is odd.  相似文献   

18.
We investigate theoretically the nonequilibrium transport properties of carbon nanotube quantum dots. Owing to the two-dimensional band structure of graphene, a double orbital degeneracy plays the role of a pseudospin, which is entangled with the spin. Quantum fluctuations between these 4 degrees of freedom result in an SU(4) Kondo effect at low temperatures. This exotic Kondo effect manifests as a four-peak splitting in the nonlinear conductance when an axial magnetic field is applied.  相似文献   

19.
We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that, in the case of incoherent spin states, it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the stationary current, which exhibits topological zeros as a function of the transverse magnetic field.  相似文献   

20.
We measure the spin splitting in a magnetic field B of localized states in single-electron transistors using a new method, inelastic spin-flip cotunneling. Because it involves only internal excitations, this technique gives the most precise value of the Zeeman energy Delta=/g/mu(B)B. In the same devices we also measure the splitting with B of the Kondo peak in differential conductance. The Kondo splitting appears only above a threshold field as predicted by theory. However, the magnitude of the Kondo splitting at high fields exceeds 2/g/mu(B)B in disagreement with theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号