首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structure of single crystals Na0.6CoO2, which are closely related to the superconducting Na0.3CoO2.yH(2)O (T(c) approximately 5 K), is studied by angle-resolved photoelectron spectroscopy. While the measured Fermi surface (FS) is consistent with the large FS enclosing the Gamma point from the band theory, the predicted small FS pockets near the K points are absent. In addition, the band dispersion is found to be highly renormalized, and anisotropic along the two principal axes (Gamma-K, Gamma-M). Our measurements also indicate that an extended flatband is formed slightly above E(F) along Gamma-K.  相似文献   

2.
The cobalt oxide superconductor Na(x)CoO(2) x yH(2)O is studied by angle-resolved photoemission spectroscopy. We report the Fermi surface (FS) topology and electronic structure near the Fermi level (E(F)) in the normal state of Na(x)CoO(2) x yH(2)O. Our result indicates the presence of the hexagonal FS centered at the Gamma point, while the small pocket FSs along Gamma-K direction are absent, similar to Na(x)CoO(2). The top of the e(g)(') band, which is expected in band calculations to form the small pocket FSs, extends to within approximately 30 meV below E(F), closer to E(F) than in Na(x)CoO(2). We discuss its possible role in superconductivity, comparing with other experimental and theoretical results.  相似文献   

3.
We addressed the so-far unresolved issue concerning the Co valence in the superconducting bilayer hydrated Na(x)CoO(2) · yH(2)O (x~0.35, y~1.3) using soft x-ray absorption spectroscopy at the Co-L(2,3) and O-K edges. We find that the valence state of the Co lies in a narrow range from +3.3 to +3.4 for all studied Na(x)CoO(2) · yH(2)O samples and their deuterated analogue with T(c)'s ranging from 3.8 to 4.7 K. These valence values are far from the often claimed +3.7, the number based on the Na content only. We propose to modify the phase diagram accordingly, where the basic electronic structure of the superconducting phase is very close to that of the Na(0.7)CoO(2) system, suggesting that the presence of in-plane spin fluctuations could play an important role for the superconductivity.  相似文献   

4.
The t(2g) quasiparticle spectra of Na(0.3)CoO(2) are calculated within the dynamical mean field theory. It is shown that as a result of dynamical Coulomb correlations charge is transferred from the nearly filled e(g(')) subbands to the a(1g) band, thereby reducing orbital polarization among Co t(2g) states. Dynamical correlations therefore stabilize the small e(g(')) Fermi surface pockets, in contrast to angle-resolved photoemission data, which do not reveal these pockets.  相似文献   

5.
We report a systematic angle-resolved photoemission study on Na(x)CoO2 for a wide range of Na concentrations (0.3 < or = x < or = 0.72). In all the metallic samples at different x, we observed (i) only a single holelike Fermi surface centered around gamma and (ii) its area changes with x according to the Luttinger theorem. We also observed a surface state that exhibits a larger Fermi surface area. The e'(g) band and the associated small Fermi surface pockets near the K points predicted by band calculations are found to sink below the Fermi energy in a manner almost independent of the doping and temperature.  相似文献   

6.
We report the first 17O NMR studies of a triangular-lattice superconductor Na(1/3)CoO2 x 4/3H(2)O and the host material Na(x)CoO2 (x=0.35 and 0.72). Knight shift measurements reveal that p-d hybridization induces sizable spin polarization in the O triangular-lattice layers. Water intercalation makes CoO2 planes homogeneous and enhances low frequency spin fluctuations near T(c)=4.5 K at some finite wave vectors different from both the ferromagnetic and "120 degree" modes.  相似文献   

7.
Takada et al. have reported superconductivity in layered Na(x)CoO(2)yH(2)O (T(c) approximately equal to 5 K). We model a reference neutral CoO2 layer as an orbitally nondegenerate spin-1/2 antiferromagnetic Mott insulator on a triangular lattice and Na(x)CoO(2)yH(2)O as electron doped Mott insulators described by a t-J model. It is suggested that at optimal doping chiral spin fluctuations enhanced by the dopant dynamics lead to a gapful d-wave superconducting state. A chiral resonating valence bond (RVB) metal, a parity and time (PT) reversal violating state with condensed RVB gauge fields, with a possible weak ferromagnetism, and low temperature p-wave superconductivity are also suggested at higher dopings.  相似文献   

8.
Crystallographic, magnetic, and NMR properties of a Na1CoO2 single crystal with x approximately = 1 are presented. We identify the stoichiometric Na1CoO2 phase, which is shown to be a nonmagnetic insulator, as expected for homogeneous planes of Co3+ ions with S = 0. In addition, we present evidence that, because of slight average Na deficiency, chemical and electronic phase separation leads to a segregation of Na vacancies into the well-defined, magnetic, Na0.8CoO2 phase. The importance of phase separation is discussed in the context of magnetic order for x approximately = 0.8 and the occurrence of a metal-insulator transition for x --> 1.  相似文献   

9.
Density functional theory is used to understand the electronic properties of Na(1/3)CoO2 and Na(1/3)CoO2(H2O)(4/3). Comparing the charge density of CoO2 and the Na doped phases indicates that doping does not simply add electrons to the t(2g) states. In fact, the electron added in the t(2g) state is dressed by hole density in the e(g) state and electron density in the oxygen states via rehybridization. In order to fully understand this phenomenon, a simple extension of the Hubbard Hamiltonian is proposed and solved using the dynamical mean-field theory. This model confirms that the rehybridization is driven by a competition between the on-site Coulomb interaction and the hybridization, and results in an effective screening of the low-energy excitations. Finally, we show that hydration causes the electronic structure to become more two dimensional.  相似文献   

10.
Superconducting single crystal samples of Na0.3CoO2.1.3H(2)O have been produced using an electrochemical technique which dispenses with the usual bromine chemical deintercalation method. In fully hydrated crystals, susceptibility and specific heat measurements confirm that bulk superconductivity has been achieved. The extracted normal state density of states indicates Fermi-liquid behavior with strong mass enhancement and a modest Wilson ratio. Measurements of H(c2) for H parallel c and H parallel ab reveal significant anisotropy, and the extracted value for the coherence length is about 100 A, consistent with an extremely narrow bandwidth.  相似文献   

11.
Doping evolution of the Fermi surface topology of Na(x)CoO(2) is studied systematically. Both local density approximation (LDA) and local spin density approximation (LSDA) predict a large Fermi surface as well as small hole pockets for doping levels x approximately 0.5. In contrast, the hole pockets are completely absent for all doping levels within LSDA+U. More importantly, we find no violation of Luttinger's rule in this system. The measured Fermi surface of Na(0.7)CoO(2) can be explained by its half-metallic behavior and agrees with our LSDA+U calculations.  相似文献   

12.
The CoO2 layers in NaxCoO2 may be viewed as a spin S=1/2 triangular-lattice doped with charge carriers. The underlying physics of the cobaltates is very similar to that of the high T_(c) cuprates. We will present unequivocal 59Co NMR evidence that below T_(CO) approximately 51 K, the insulating ground state of the itinerant antiferromagnet Na0.5CoO2 (T_(N) approximately 86 K) is induced by charge ordering.  相似文献   

13.
NaxCoO2, the parent compound of the recently synthesized superconductor Na(x)CoO(2):yH(2)O, exhibits bulk antiferromagnetic order below approximately 20 K for 0.75相似文献   

14.
We use the dynamical mean-field theory to calculate the Fermi surface and heat capacity for Na0.3CoO2. We resolve the conflicting outcomes of previous calculations by demonstrating that the nature of the calculated Fermi surface depends sensitively upon the bare Hamiltonian, and, in particular, the crystal-field splitting. By calculating both the Fermi surface and the heat capacity, we show that the only conclusion consistent with angle-resolved photoemission and heat capacity measurements is that the e'g pockets are not present at the Fermi surface.  相似文献   

15.
A 59Co NMR study of CoO2, the x=0 end member of AxCoO2 (A=Na,Li,...) cobaltates, reveals a metallic ground state, though with clear signs of strong electron correlations: low-energy spin fluctuations develop at wave vectors q not equal to 0 and a crossover to a Fermi-liquid regime occurs below a characteristic temperature T* approximately 7 K. Despite some uncertainty over the exact cobalt oxidation state in this material, the results show that electronic correlations are revealed as x is reduced below 0.3. The data are consistent with NaxCoO2 being close to the Mott transition in the x-->0 limit.  相似文献   

16.
We report the magnetization, specific heat, and transport measurements of a high quality Na(0.85)CoO2 single crystal in applied magnetic fields up to 14 T. At high temperatures, the system is in a paramagnetic phase. It undergoes a magnetic phase transition below approximately 20 K. For the field H||c, the measurement data of magnetization, specific heat, and magnetoresistance reveal a metamagnetic transition from an antiferromagnetic state to a quasiferromagnetic state at about 8 T at low temperatures. However, no transition is observed in the magnetization measurements up to 14 T for H perpendicular c. The low temperature magnetic phase diagram of Na(0.85)CoO2 is determined.  相似文献   

17.
Charge disproportionation (CD) and spin differentiation in Na(1/2)CoO2 are studied using the correlated band local-density approximation + Hubbard U (LDA+U) approach. The simultaneous CD and gap opening seen previously is followed in detail through a first-order charge disproportionation transition 2Co(3.5+)-->Co3++Co4+. Disproportionation in the Co a(g) orbital results in half of the ions (Co3+) becoming electronically and magnetically dead, transforming the quarter-filled a(g) system into a half-filled subsystem that subsequently undergoes the observed charge ordering or metal-insulator transition. Comparing with data in the x approximately 0.3 regime suggests the system has moved into the multiband regime where the effective Coulomb repulsion U-->U(eff)=U/sqrt[3] strongly lessens correlation effects.  相似文献   

18.
We report polarized and unpolarized neutron scattering measurements of the magnetic order in single crystals of Na0.5CoO2. Our data indicate that below TN=88 K the spins form a novel antiferromagnetic pattern within the CoO2 planes, consisting of alternating rows of ordered and nonordered Co ions. The domains of magnetic order appear to be closely coupled to the domains of Na ion order, consistent with such a twofold symmetric spin arrangement. Magnetoresistance and anisotropic susceptibility measurements further support this model for the electronic ground state.  相似文献   

19.
We report polarized- and unpolarized-neutron scattering measurements of magnetic excitations in single-crystal Na0.75CoO2. The data confirm ferromagnetic correlations within the cobalt layers and reveal antiferromagnetic correlations perpendicular to the layers, consistent with an A-type antiferromagnetic ordering. The magnetic modes propagating perpendicular to the layers are sharp, and reach a maximum energy of approximately 12 meV. From a minimal spin-wave model, containing only nearest-neighbor Heisenberg exchange interactions, we estimate the interlayer and intralayer exchange constants to be 12.2+/-0.5 meV and -6+/-2 meV, respectively. We conclude that the magnetic fluctuations in Na0.75CoO2 are highly three dimensional.  相似文献   

20.
Using spectral ellipsometry, we measured the dielectric function of a Na(0.82(2))CoO2 crystal that exhibits bulk antiferromagnetism with T(N)=19.8 K. We identify two prominent transitions as a function of temperature. The first one at 280 K involves marked changes of the electronic and lattice responses that are indicative of charge ordering in the CoO2 layers. The second transition occurs around T(N)=19.8 K and reveals sizable spin-charge coupling. The data are discussed in terms of charge ordering and formation of magnetopolarons due to a charge-induced spin-state transition of adjacent Co3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号