首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
硅烯具有独特的电子、光学、热学、力学以及量子特性,在电子器件、电极材料、储氢材料、催化剂和气体传感器等领域有巨大的潜在应用价值.本文采用基于密度泛函理论的第一性原理计算方法,利用Materials Studio软件中的CASTEP程序包对硅烯与CO分子之间的吸附行为进行了研究.重点研究了硅烯掺杂方式、CO分子吸附构型及硅烯空位缺陷浓度对CO分子吸附的影响,研究结果表明:1)空位缺陷硅烯对CO分子的吸附能力最强;2)碳原子垂直朝向空位缺陷硅烯更有利于CO分子的吸附;3)硅烯对CO分子的吸附能力随其空位浓度的增加显著增强;4)空位硅烯向CO分子转移电荷,电荷转移量与二者的吸附作用强弱呈正相关.该研究可为硅烯基CO气体传感器的设计提供理论指导.  相似文献   

2.
C. Weaver 《物理学进展》2013,62(42):83-201
The evidence for vacancy-pair formation in alkali halide crystals is reviewed. Existing information on the dielectric properties and structure of thin films is discussed with a view to using the high defect concentrations in vacuum-deposited films to confirm vacancy-pair orientation effects. Experimental measurements of the dielectric constant and dissipation factor of evaporated films have been made at room temperature over a range of frequencies from 100 c.p.s. to 100 kc/s. Even under vacuum these films show pronounced losses at low frequencies which are attributed to excess vacancy concentrations. Such losses are contrary to the theory of ideal lattices and are not shown by single crystals.

In spite of the excess defect concentrations no evidence of vacancy-pair orientation has been found. Ageing effects have been observed in all cases, the losses decreasing with time as the defect concentration decreases. In the alkali halides the magnitude of the losses depends on the cation mobility but they decrease at a rate determined by the anion mobility. This leads to a proposed dielectric relaxation mechanism in which individual crystallites form the polarizable units, becoming polarized by migration of the cation vacancies towards one end. The losses decrease as the defects are gradually eliminated by simultaneous condensation of positive and negative vacancies at grain boundaries. This is essential to maintain electrical neutrality and the rate is determined by the diffusion of the slower anion vacancies. The measured rates are in agreement with anion activation energies obtained by tracer methods. These results cannot be explained by vacancy-pair formation even if it is assumed that vacancy pairs can form but are incapable of orientation and hence we must conclude that there is little or no vacancy-pair formation.

Measurements at atmospheric pressure show that moisture has a pronounced effect in all cases, producing dielectric losses which completely obscure the vacancy effects. The changes in dielectric properties during and after adsorption cannot be explained as conductivity effects and are in complete opposition to any modification of the Maxwell-Wagner theory. The ageing effects show that after the initial adsorption, the water molecules migrate over crystallite surfaces to positions where they are more strongly bound and contribute to the dielectric polarization by a form of hindered rotation closely analogous to mechanisms proposed for ice. At these equilibrium sites, H-bonds are frequently formed between the adsorbed molecules and the halide ions of the crystal lattice.  相似文献   

3.
4.
We investigate the thermal transport properties of armchair graphene nanoribbons (AGNRs) possessing various sizes of triangular vacancy defect within a temperature range of 200–600 K by using classical molecular dynamics simulation. The results show that the thermal conductivities of the graphene nanoribbons decrease with increasing sizes of triangular vacancy defects in both directions across the whole temperature range tested, and the presence of the defect can decrease the thermal conductivity by more than 40% as the number of removed cluster atoms is increased to 25 (1.56% for vacancy concentration) owing to the effect of phonon–defect scattering. In the meantime, we find the thermal conductivity of defective graphene nanoribbons is insensitive to the temperature change at higher vacancy concentrations. Furthermore, the dependence of temperatures and various sizes of triangular vacancy defect for the thermal rectification ration are also detected. This work implies a possible route to achieve thermal rectifier for 2D materials by defect engineering.  相似文献   

5.
Using first-principles calculations we show that the adsorption of atomic hydrogen on graphene opens a substantial gap in the electronic density of states in which lies a spin-polarized gap state. This spin is quenched by the presence of a rotated C-C bond (a Stone-Wales defect) adjacent to or distant from the H atom. We explain these findings and discuss the implications for nanotubes and magnetic nanographene. Furthermore, we demonstrate that the combined effect of high curvature and a Stone-Wales defect makes H2 chemisorption close to being thermodynamically favorable.  相似文献   

6.
Point defects on a Si(001)-(2 x 1) surface were examined by scanning tunneling microscopy and ab initio pseudopotential calculations. The residual water molecules in the ultrahigh vacuum chamber are found to be the sole origin of the type-C defects. Most of the apparent dimer vacancies in the filled-state images were found to show a distinct U-shaped triple-dimer footprint in the empty-state images, which also originate from water adsorption. These two defects were identified as a single dissociated water molecule forming Si-OH and Si-H bonds in the interdimer (type-C defect) and the on-dimer (dimer-vacancy-like or U-shape defect) configurations.  相似文献   

7.
We investigate the interaction of single-walled carbon nanotubes (SWCNTs) and methane molecule from the first principles. Adsorption energies are calculated, and methane affinities for the typical semiconducting and metallic nanotubes are compared. We also discuss role of the structural defects and nanotube curvature on the adsorption capability of the SWCNTs. We could observe larger adsorption energies for the metallic CNTs in comparison with the semiconducting CNTs. The obtained results for the zig zag nanotubes with various diameters reveal that the adsorption energy is higher for nanotubes with larger diameters. For defected tubes the adsorption energies are calculated for various configurations such as methane molecule approaching to the defect sites pentagon, hexagon, and heptagon in the tube surface. The results show that the introduce defects have an important contribution to the adsorption mechanism of the methane on SWNTs.  相似文献   

8.
李威  冯妍卉  陈阳  张欣欣 《物理学报》2012,61(13):136102-136102
在碳纳米管的制备过程中, 各种点缺陷不可避免地存在于其晶格结构中, 对于碳管的热输运性质造成不可忽视的影响. 使用非平衡分子动力学方法, 选用反应经验键序势能, 模拟计算含有缺陷的碳纳米管的热导率. 尝试采用正交试验方法设计算例, 不但减少了计算量, 并且利于分析缺陷类型、 管长和管径三种结构因素对缺陷造成的热导率下降影响的主次和趋势. 重点研究了掺杂、 吸附和空位三类点缺陷的影响, 与无缺陷完整碳纳米管进行比较, 开展缺陷效应分析, 并进一步考察了环境温度等因素的影响. 模拟结果表明, 相对完整无缺陷碳管, 含有点缺陷的碳管热导率显着下降; 在有缺陷存在的情况下, 缺陷的类型对碳管热导率的影响最大, 管径次之, 管长影响相对最小; 缺陷类型对热导率影响力从大到小依次为: 空位 > 掺杂 > 吸附; 不同环境温度下, 点缺陷对碳管热导率的影响不尽相同.  相似文献   

9.
采用基于密度泛函理论的第一性原理方法,研究了本征石墨烯和缺陷石墨烯吸附钠原子的电荷密度、吸附能、态密度和储存量.结果表明,本征石墨烯中,钠原子的最佳吸附位置为H位,缺陷石墨烯中,钠原子的最佳吸附位置为T_D位.缺陷石墨烯对钠原子的吸附能是-4.423 eV,约为本征石墨烯对钠原子吸附能的2.5倍;钠原子与缺陷石墨烯中的碳原子发生轨道杂化,而与本征石墨烯没有发生轨道杂化现象.缺陷石墨烯能够吸附10个钠原子,与本征石墨烯相比显著提高.因此,缺陷石墨烯有望成为一种潜在的储钠材料.  相似文献   

10.
Ma G  Tang SH  Shen J  Zhang Z  Hua Z 《Optics letters》2004,29(15):1769-1771
A one-dimensional photonic crystal containing a single CdS defect layer of various thicknesses was fabricated. The dependence of the two-photon-absorption (TPA) coefficient on the defect mode was investigated by use of a femtosecond pump-probe method. Experimental results show that the TPA coefficient of the CdS defect layer depends strongly on the defect mode in the photonic bandgap. This is consistent with the predicted dependence of light intensity within the defect layer.  相似文献   

11.
The adsorption mechanisms of formaldehyde (H2CO) on modified graphene, including aluminum doping, Stone–Wales (SW) defects, and a combination of these two, were investigated via density functional theory (DFT). It was found that the graphene with SW defect is more sensitive than that of perfect graphene for detecting H2CO molecules. Compared with Al-doped graphene/H2CO complex, the binding energy for Al-doped SW defect complex can be enhanced by the introduction of a SW defect. The large values of binding energy and net charge transfer for this complex indicate a strong chemisorption and a larger affinity with H2CO for the modified graphene. Furthermore, the density of states (DOS) of the complex shows that the effect of defect–dopant combination on adsorption mechanisms is due to the orbital hybridization between the Al atom and its adjacent C atoms. In addition, it can be expected that adsorption of H2CO on the surface of Al-doped SW defect may occur easily, and the Al-doped SW graphene is more suitable for H2CO gas detection.  相似文献   

12.
Surface defects are commonly believed to be fundamentally important to gas-sensor performance. We examine the effect of gas coverage and ethanol orientation on its adsorption on the stoichiometric and oxygen deficient (101(-)0) nanowire surface. Our density functional theory calculations show that ethanol adsorbs in multiple stable configurations at coverages between 1/4 and 1 ML, highlighting the ability of ZnO to detect ethanol. Ethanol prefers to bind to a surface Zn via the adsorbate oxygen atom and, if a surface oxygen atom is in close proximity, the molecule is further stabilized by formation of a hydrogen bond between the hydrogen of the hydroxyl group and the surface oxygen. Two primary adsorption configurations were identified and have different binding strengths that could be distinguished experimentally by the magnitude of their OH stretching frequency. Our findings show that ethanol adsorbed on the oxygen deficient ZnO(101(-)0) surface has a reduced binding strength. This is due to either the lack of a hydrogen bond (due to a deficiency in surface oxygen) or to surface reconstruction that occurs on the defect surface that weakens the hydrogen bond interaction. This reduced binding on the oxygen deficient surface is in contrast to the defect enhanced gas-sensor interaction for other gases. Despite this difference, ethanol still acts as a reducing gas, donating electrons to the surface and decreasing the band gap. We show that multiple adsorbed ethanol molecules prefer to be orientated parallel to each other to facilitate the hydrogen bonding to the defect-free surface for enhanced interaction.  相似文献   

13.
Interactions of HCOOH with stoichiometric (nearly defect-free) and defective TiO2(110) surfaces have been studied experimentally using X-ray photoelectron spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), and theoretically using electronic structure calculations. The HCOOH saturation coverages were 0.58 ML, 0.77 ML, and 0.92 ML (1 ML ≈ 5.2 × 1014 cm−2) for nearly defect-free surfaces, for electron-beam exposed surfaces, and for Ar+ ion bombarded surfaces, respectively. The excess formic acid adsorption quantitatively corresponds to the number of newly exposed sites created by electron-beam exposure. Electronic structure calculations show a strong adsorptive interaction for formate on cation sites on both stoichiometric and defective TiO2 surfaces, consistent with the experimental observations. In spite of adsorption at defect sites, little or no defect healing (defect healing means a reduction in defect signal observed by the photoemission measurements) was observed for either electron-beam exposed or Ar+ bombarded surfaces by HCOOH exposure up to 104L at room temperature. However, some healing will occur if extra energy provided by electrons is introduced to breakdown formate species. In contrast to water adsorption, electronic structure calculations on defective TiO2 have found that formate is located in an asymmetric position with respect to the Ti3+ sites with a potential additional interaction with the Ti4+ site.  相似文献   

14.
In this work, first-principles modeling techniques are used to investigate the mechanism(s) of adsorption of molecular oxygen on the GaAs(0 0 1)-(2 × 4) surface. The reaction of adsorption was modeled using ab-initio molecular dynamics at constant temperature for two thermal regimes, i.e. 300 K and 680 K, respectively. The resulting adsorbate configurations were relaxed using density functional theory and the adsorption energies were subsequently computed. Our results suggest a dominant mechanism of adsorption described by molecular dissociation, followed by oxygen insertion in the Ga-As bonds, bridging Ga-O-As chemical bonds. The electronic properties of the clean reconstructed GaAs(0 0 1) surface and the ones obtained after O2 adsorption were computed. It is found that for the most stable adsorbate configuration, where oxygen is incorporated in a Ga-O-As unit, the associated density of electronic states is free of defect levels within the GaAs band gap region.  相似文献   

15.
16.
Resonance vibrations of heavy defects can interact with phonons. For low defect concentrations, this leads to a broadening and distortion of the phonon dispersion, whereas for higher concentrations and low resonance frequencies a splitting should occur. Neutron inelastic scattering measurements in the system Al0.965Ag0.035 show the predicted splitting. The observed resonance frequency agrees well with the one predicted for the pure mass defect.  相似文献   

17.
We find that a defect state treatment of localized excitations in LiF within the local density functional formalism accounts remarkably well for the observed experimental (core plus optical gap) excitations — in contrast to the failure of the one-electron band model. We show that when electron relaxation, self-interaction and charge polarization effects are taken into account by treating the excitation as a localized points defect, the improved band model predicts the correct excitation and interband states.  相似文献   

18.
文章采用第一性原理,利用掺杂硼的碳纳米管(BC3NT)容易产生拓扑缺陷的特点,将其用作混合系锂空气电池正极材料,研究了BC3NT拓扑缺陷电子性质及氧分子吸附.结果表明:BC3NT产生的拓扑缺陷使得氧气在纳米管外表面吸附更加稳定,且缺陷环越大,吸附越稳定.七元环缺陷、八元环缺陷分别会使氧气在纳米管外表面发生半解离吸附和完全解离吸附,有利于氧还原反应的发生;通过布居分析电荷转移进一步验证了缺陷环越大,转移电荷越多,吸附越稳定. BC3NT能增强对氧分子的解离吸附能力,有利于氧还原反应的进行.该材料适合用作混合系锂空气电池正极,有利于提高其性能.  相似文献   

19.
One-dimensional photonic crystals with a defect layer of CdS were fabricated. The observed enhancement of two-photon absorption (TPA) in the CdS layer can be attributed to the intensified optical field confined within the defect layer of the photonic crystal. The results show that the enhancement of TPA coefficient depends basically on the number of periods of the photonic crystal and the defect mode position in the photonic band gap. The observation agrees qualitatively with the expectations of a computation by matrix transfer formulation.  相似文献   

20.
Based on the thermodynamic approach, a kinetic model of adsorption of point defects from the volume of joint materials into the interface between them is developed. This model, which is more general than previous one, is used to obtain and analyze the dependence of the interface surface tension on the content of impurities incorporated into materials. The effect of defect diffusion in layers of joint materials on the defect adsorption into the interface is estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号