首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed high-resolution angle-resolved photoemission spectroscopy on Nd1.87Ce0.13CuO4, which is located at the boundary of the antiferromagnetic (AF) and the superconducting phase. We observed that the quasiparticle (QP) effective mass around (pi,0) is strongly enhanced due to the opening of the AF gap. The QP mass and the AF gap are found to be anisotropic, with the largest value near the intersecting point of the Fermi surface and the AF zone boundary. In addition, we observed that the QP peak disappears around the Néel temperature (TN) while the AF pseudogap is gradually filled up at much higher temperatures, possibly due to the short-range AF correlation.  相似文献   

2.
We analyze and compare the effect of spatial and spin anisotropy on spin conductivity in a two dimensional S = 1/2 Heisenberg quantum magnet on a square lattice. We explore the model in both the Néel antiferromagnetic (AF) phase and the collinear antiferromagnetic (CAF) phase. We find that in contrast to the effects of spin anisotropy in the Heisenberg model, spatial anisotropy in the AF phase does not suppress the zero temperature regular part of the spin conductivity in the zero frequency limit–rather it enhances it. In the CAF phase (within the non-interacting approximation), the zero frequency spin conductivity has a finite value, which is suppressed as the spatial anisotropy parameter is increased. Furthermore, the CAF phase displays a spike in the spin conductivity not seen in the AF phase. We also explore the finite temperature effects on the Drude weight in the AF phase (within the collisionless approximation). We find that enhancing spatial anisotropy increases the Drude weight value and increasing spin anisotropy decreases the Drude weight value. Based on these studies, we conclude that antiferromagnets with spatial anisotropy are better spin conductors than those with spin anisotropy at both zero and finite temperatures.  相似文献   

3.
The magnetic field induced antiferromagnetic moment M(AF) at low magnetic fields in the antiferroquadrupolar (AFQ) ordered phase of CeB6 was investigated by elastic neutron diffraction experiments for H parallel [110]. The peak intensity at the AF magnetic reciprocal point (1 / 2,1 / 2,1 / 2) corresponding to M(2)(AF) increases with decreasing temperature below the AFQ ordering temperature T(Q), and exhibits a broad maximum at T approximately 3 K and decreases with a further decrease of temperature. This unusual behavior of M(AF) at low fields is explained as a result of the competition between the AF-octupolar and AF-exchange interactions in the O(xy) type AFQ ordered state.  相似文献   

4.
We investigate charge dynamics in the antiferromagnetic (AF) phase of electron-doped cuprates by using numerically exact diagonalization technique for an electron-doped t-t′-J model. When AF correlation develops with decreasing temperature, a gap-like behavior emerges in the optical conductivity accompanied by the enhancement of the coherent motion of carriers due to the same sublattice hoppings. This is a remarkable contrast to the behavior of a hole-doped t-t′-J model.  相似文献   

5.
《Physics letters. A》2020,384(21):126425
By means of the mean-field method and the random phase approximation, we study the magnetic properties of the correlated Chern insulator on a checkerboard lattice with topological flat band. The antiferromagnetic (AF) order is found to be more stable than the ferromagnetic (FM) order at half filling. While at quarter filling, the system becomes a FM-Chern insulator induced by the FM order. The phase diagram is more complex for other fillings. FM order is more stable than AF order for small doping due to the flatness of band structure, while FM and AF orders compete at large doping.  相似文献   

6.
Shubnikov-de Haas measurements of high quality URu2Si2 single crystals reveal two previously unobserved Fermi surface branches in the so-called hidden order phase. Therefore, about 55% of the enhanced mass is now detected. Under pressure in the antiferromagnetic state, the Shubnikov-de Haas frequencies for magnetic fields applied along the crystalline c axis show little change compared with the zero pressure data. This implies a similar Fermi surface in both the hidden order and antiferromagnetic states, which strongly suggests that the lattice doubling in the antiferromagnetic phase due to the ordering vector Q(AF)=(001) already occurs in the hidden order. These measurements provide a good test for existing or future theories of the hidden order parameter.  相似文献   

7.
Critical behavior of the metal-insulator transition (MIT) coupled with spin/orbital correlations has been investigated for single crystals of La1-(x)Sr(x)VO3. In the paramagnetic (PM) metal phase (x > 0.260), the precursor to the MIT manifests itself as an enhancement of carrier effective mass. In the antiferromagnetic (AF) metal phase (0.178 < or = x < or = 0.260), the carrier density decreases and the correlation of the orbital seems to evolve towards the MIT (x = 0.178). In the AF insulating phase (x < 0.178), the distinct first-order structural phase transition occurs with the decrease of temperature, perhaps concomitantly with the orbital ordering.  相似文献   

8.
We study long wavelength magnetic excitations in lightly doped La2-xSrxCuO4 (x相似文献   

9.
A low-temperature (3–100 K) electron spin resonance (ESR) study of the spin system of neutral As donors in Ge showed that on the insulator side of the insulator-metal transition the single-spin density exponentially disappears as T → 0. Such spins are bound into pairs to give an antiferromagnetic (AF) phase. Upon increasing the temperature the AF phase is destroyed, the single-spin density and, as a result, the ESR absorption signal becomes stronger. The temperature dependences of the densities of the pairs and single spins are typical for a chaotic distribution of neutral donors. In this case, there is no Néel temperature. For a low degree of compensation, the crystal lattice of Ge with the AF phase is actually a nanostructured system characterized by anisotropic internal stresses that are the strongest along one of the [110] directions. These stresses give rise to the anisotropy of the g-factor which is responsible for experimentally observed splitting of the ESR line. The compensating impurities destroy the AF phase and reduce this splitting. Local stresses are present in this case, too, but now they appear because of the Coulomb interaction of oppositely charged impurities and have no preferred orientation.  相似文献   

10.
We find a novel channel of quasiparticle reflection from the simplest two-sublattice antiferromagnet (AF) on a bipartite lattice. Low-energy quasiparticles in a normal metal (N) experience spin-dependent retroreflection at AF/N interfaces. As a combined effect of antiferromagnetic and Andreev reflections, subgap Andreev states arise at an AF/superconductor (SC) interface. When the antiferromagnetic reflection dominates the specular one, Andreev bound states have almost zero energy on AF/s-wave superconductor (sSC) interfaces, whereas there are no low-energy subgap states on AF/d-wave superconductor (dSC) boundaries. For an sSC/AF/sSC junction, the bound states are found to split, due to the finite width of the AF interlayer, and carry the supercurrent. The theory developed in the present Letter is based on a novel quasiclassical approach, which applies to interfaces involving itinerant antiferromagnets.  相似文献   

11.
We investigate the effects of temperature and hole doping on the antiferromagnetic (AF) ground states by considering the system of electrons on a two dimensional square lattice under the external magnetic field. In the mean field calculation of Hubbard Hamiltonian we find out that the magnetic field suppresses the AF order in a unique manner for all parameter values ofT and δ. We obtained the phase diagram of AF order inT-δ plane as a function of Coulomb correlation strength and magnetic field. We find the reentrant behavior of AF order in both the absence and the presence of magnetic field.  相似文献   

12.
The magnetic properties of a Fe2P-type intermetallic compound MnRhAs have been investigated under high pressure up to 8.0 GPa by AC susceptibility measurement. Initially, both the antiferromagnetic (AF(I)) to the canted state magnetic transition temperature Tt and the canted state to another antiferromagnetic one (AF(II)) transition temperature TC increase with compression. At 4.0 GPa, however, Tt decreases abruptly, while the increasing rate of TC becomes larger above this pressure. A pressure-induced magnetic phase transition was seen at around this pressure when Tt and TC are plotted in the pressure–temperature phase diagram. The transition from the antiferromagnetic to the ferromagnetic state observed below 160 K with increasing pressure is not frequently observed.  相似文献   

13.
It is an important issue to clarify whether the odd-frequency superconducting state can be derived from microscopic Hamiltonian or not, where gap function has an odd-parity in frequency. We study the instability of following four superconducting states: (1) even-frequency spin-singlet, (2) even-frequency spin-triplet, (3) odd-frequency spin-singlet and (4) odd-frequency spin-triplet. By using the fluctuation exchange (FLEX) approximation on a triangular and square lattice, we find that the odd-frequency spin-triplet pairing can become dominant at a certain region where the suppression of the antiferromagnetic fluctuation due to a geometric frustration becomes prominent.  相似文献   

14.
The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising spin glass model with a local BCS pairing interaction in the presence of an applied magnetic transverse field Γ. In the present approach, spins in different sublattices interact with a Gaussian random coupling with an antiferromagnetic mean J0 and standard deviation J. The problem is formulated in the path integral formalism in which spin operators are represented by bilinear combinations of Grassmann variables. The saddle-point Grand Canonical potential is obtained within the static approximation and the replica symmetric ansatz. The results are analysed in phase diagrams in which the AF and the SG phases can occur for small g (g is the strength of the local superconductor coupling written in units of J), while the PAIR phase appears as unique solution for large g. However, there is a complex line transition separating the PAIR phase from the others. It is second order at high temperature that ends in a tricritical point. The quantum fluctuations affect deeply the transition lines and the tricritical point due to the presence of Γ.  相似文献   

15.
We have used soft X-ray resonant magnetic scattering (XRMS) to search for the presence of an effective ferromagnetic moment belonging to the antiferromagnetic (AF) layer which is in close contact with a ferromagnetic (F) layer. Taking advantage of the element specificity of the XRMS technique, we have measured hysteresis loops of both Fe and CoO layers of a CoO(40 Å)/Fe (150 Å) exchange bias bilayer. From these measurements we have concluded that the proximity of the F layer induces a magnetic moment in the AF layer. The F moment of the AF layer has two components: one is frozen and does not follow the applied magnetic field and the other one follows in phase the ferromagnetic magnetization of the F layer. The temperature dependence of the F components belonging to the AF layer is shown and discussed.  相似文献   

16.
Making a revision of mistakes in Ref. [19], we present a detailed study of the competition and interplay between the d-density wave (DDW) and d-wave superconductivity (DSC) within the fluctuation-exchange (FLEX) approximation for the two-dimensional (2D) Hubbard model. In order to stabilize the DDW state with respect to phase separation at lower dopings a small nearest-neighbor Coulomb repulsion is included within the Hartree-Fock approximation. We solve the coupled gap equations for the DDW, DSC, and π-pairing as the possible order parameters, which are caused by exchange of spin fluctuations, together with calculating the spin fluctuation pairing interaction self-consistently within the FLEX approximation. We show that even when nesting of the Fermi surface is perfect, as in a square lattice with only nearest-neighbor hopping, there is coexistence of DSC and DDW in a large region of dopings close to the quantum critical point (QCP) at which the DDW state vanishes. In particular, we find that in the presence of DDW order the superconducting transition temperature Tc can be much higher compared to pure superconductivity, since the pairing interaction is strongly enhanced due to the feedback effect on spin fluctuations of the DDW gap. π-pairing appears generically in the coexistence region, but its feedback on the other order parameters is very small. In the present work, we have developed a weak-coupling theory of the competition between DDW and DSC in 2D Hubbard model, using the static spin fluctuation obtained within FLEX approximation and ignoring the self-energy effect of spin fluctuations. For our model calculations in the weak-coupling limit we have taken U/t=3.4, since the antiferromagnetic instability occurs for higher values of U/t.  相似文献   

17.
The fully frustrated spin-1/2 Heisenberg FM/AF square bilayer in a magnetic field with the ferromagnetic inter-dimer interaction and the antiferromagnetic intra-dimer interaction is explored by the use of localized many-magnon approach, which allows to connect the original purely quantum Heisenberg spin model on a square bilayer with the effective ferromagnetic Ising model on a simple square lattice. Magnetization and specific heat are investigated exactly at a field-driven phase transition from the singlet-dimer phase towards the fully saturated ferromagnetic phase, which changes from a discontinuous phase transition to a continuous one at a certain critical temperature. The mapping correspondence between the spin-1/2 Heisenberg FM/AF square bilayer and the ferromagnetic Ising square lattice suggests for this special critical point of the spin-1/2 Heisenberg FM/AF square bilayer critical exponents from the standard two-dimensional Ising universality class.  相似文献   

18.
The Kondo lattice model enlarged by an antiferromagnetic coupling J AF between the localized spins is here investigated using computational techniques. Our results suggest the existence of a d-wave superconducting phase close to half-filling mediated by antiferromagnetic fluctuations. This establishes a closer connection between theory and heavy fermion experiments than currently provided by the standard Kondo lattice model with J AF=0.  相似文献   

19.
The formation of the superconducting phase in short-period proximity-effect layered superlattices of the superconductor-band-antiferromagnetic-metal (SC/AF) type is studied. The exact solution of the Usadel equations is used to discuss the possibility of formation in such structures of a ground state in which the order parameters of the adjacent superconducting layers have opposite signs (the “π-phase”). The dependence of the superconducting transition temperature and the upper critical field normal to the layers on the lattice period, the intensity of magnetic interaction in the antiferromagnetic layer, and the state of the interface between the layers is examined. It is found that there exists a nonlinear dependence of the conditions for the appearance of the superconducting state in a layered SC/AF system on the system’s parameters. Finally, the conditions for the appearance of the superconducting phase in proximity-effect superlattices consisting of a superconductor with nonmagnetic, ferromagnetic, and antiferromagnetic metals are compared. Zh. éksp. Teor. Fiz. 111, 547–561 (February 1997)  相似文献   

20.
We investigate the phase diagram of antiferromagnetic spin ladders with additional exchange interactions on diagonal bonds by variational and numerical methods. These generalized spin ladders interpolate smoothly between the [Formula: see text] chain with competing nn and nnn interactions, the [Formula: see text] chain with alternating exchange and the antiferromagnetic (AF) S = 1 chain. The Majumdar - Ghosh ground states are formulated as matrix product states and are shown to exhibit the same type of hidden order as the AF S = 1 chain. Generalized matrix product states are used for a variational calculation of the ground state energy and the spin and string correlation functions. Numerical (Lanczos) calculations of the energies of the ground state and of the low-lying excited states are performed, and compare reasonably with the variational approach. Our results support the hypothesis that the dimer and Majumdar - Ghosh points are in the same phase as the AF S = 1 chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号