首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 975 毫秒
1.
Quanming Lu 《中国物理 B》2022,31(8):89401-089401
Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection, the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region, in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm's law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth's magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations.  相似文献   

2.
Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pileup at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfvén time.  相似文献   

3.
Electromagnetic particle-in-cell simulations of fast collisionless reconnection in a two-dimensional electron-positron plasma (without an equilibrium guide field) are presented. A generalized Ohm's law in which the Hall current cancels out exactly is given. It is suggested that the key to fast reconnection in this plasma is the localization caused by the off-diagonal components of the pressure tensors, which produce an effect analogous to a spatially localized resistivity.  相似文献   

4.
A fully nonlinear Bernstein-Greene-Kruskal stationary solution is found in the form of a quasi-three-dimensional chain of electron holes coupled to hydrodynamic vortices. This new coherent structure is enabled by the trapping and depletion of resonant particles, and the cyclotron dissipation of the singular current sheets. It is expected to play an important role in the collisionless magnetic field line reconnection in the drift-wave plasma regime, where it represents a plausible saturated state.  相似文献   

5.
In this Letter we report a clear and unambiguous observation of the out-of-plane quadrupole magnetic field suggested by numerical simulations in the reconnecting current sheet in the magnetic reconnection experiment. Measurements show that the Hall effect is large in the collision-less regime and becomes small as the collisionality increases, indicating that the Hall effect plays an important role in collision-less reconnection.  相似文献   

6.
We investigate the magnetic energy transfer from the fluid to kinetic scales and dissipation processes using three-dimensional fully kinetic particle-in-cell plasma simulations. The nonlinear evolution of a sheet pinch is studied where we show that it exhibits both fluid scale global relaxation and kinetic scale collisionless reconnection at multiple resonant surfaces. The interactions among collisionless tearing modes destroy the original flux surfaces and produce stochastic fields, along with generating sheets and filaments of intensified currents. In addition, the magnetic energy is transferred from the original shear length scale both to the large scales due to the global relaxation and to the smaller, kinetic scales for dissipation. The dissipation is dominated by the thermal or pressure effect in the generalized Ohm's law, and electrons are preferentially accelerated.  相似文献   

7.
A conceptual model of resistive magnetic reconnection via a stochastic plasmoid chain is proposed. The global reconnection rate is shown to be independent of the Lundquist number. The distribution of fluxes in the plasmoids is shown to be an inverse-square law. It is argued that there is a finite probability of emergence of abnormally large plasmoids, which can disrupt the chain (and may be responsible for observable large abrupt events in solar flares and sawtooth crashes). A criterion for the transition from the resistive magnetohydrodynamic to the collisionless regime is provided.  相似文献   

8.
Particle-in-cell simulations of collisionless magnetic reconnection are presented that demonstrate that reconnection remains fast in very large systems. The electron dissipation region develops a distinct two-scale structure along the outflow direction. Consistent with fast reconnection, the length of the electron current layer stabilizes and decreases with decreasing electron mass, approaching the ion inertial length for a proton-electron plasma. Surprisingly, the electrons form a super-Alfvénic outflow jet that remains decoupled from the magnetic field and extends large distances downstream from the x line.  相似文献   

9.
Temperature gradients are shown to deform and shift the magnetic islands that grow during fast collisionless reconnection when electron inertia decouples the plasma motion from the magnetic field. A kinetic electron model describes the collisionless processes during the reconnection of field lines originating in regions with different temperatures. Using a novel model of the reconnecting instability as a surface mode, the kinetic effects are treated analytically in the linear and nonlinear stages of the instability of a current-carrying low-beta plasma slab in a strong magnetic guide field.  相似文献   

10.
It is shown that the pattern of current layers formed within a magnetic island in the nonlinear phase of magnetic field line reconnection in a collisionless two-dimensional fluid plasma is subject to the onset of a secondary instability, the effect of which increases with decreasing electron temperature. In the cold electron limit the saturation of the island growth is accompanied by a turbulent redistribution of the current layers and by the development of long lived fluid vortices while, in the opposite limit, the current layer structure remains regular.  相似文献   

11.
A two-dimensional, two-fluid model is used to investigate driven magnetic reconnection in collisionless or semicollisional plasmas. The reconnection is driven by externally induced plasma flows in a background magnetic configuration that has a hyperbolic null component in the reconnection plane and a strong component, the so-called guide component, perpendicular to that plane. A dynamic solution is obtained in which the reconnection proceeds in two phases: an initial one whose characteristic rate is a fraction of the Alfvén frequency, and a later one whose rate is determined by the electron collision frequency.  相似文献   

12.
本文考察了由于温度各向异性分布产生的电磁波不稳定性所联系的反常电阻率问题,讨论了这一现象与地球磁场磁尾区中“磁再联”现象的关系。  相似文献   

13.
I propose a new paradigm for solar coronal heating viewed as a self-regulating process keeping the plasma marginally collisionless. The mechanism is based on the coupling between two effects. First, coronal density controls the plasma collisionality and hence the transition between the slow collisional Sweet-Parker and the fast collisionless reconnection regimes. In turn, coronal energy release leads to chromospheric evaporation, increasing the density and thus inhibiting subsequent reconnection of the newly reconnected loops. As a result, statistically, the density fluctuates around some critical level, comparable to that observed in the corona. In the long run, coronal heating can be represented by repeating cycles of fast reconnection events (nanoflares), evaporation episodes, and long periods of slow magnetic stress buildup and radiative cooling of the coronal plasma.  相似文献   

14.
The fluctuation-induced Hall electromotive force, [deltaJ x deltaB]/nee, is experimentally measured in the high-temperature interior of a reversed-field pinch plasma by a fast Faraday rotation diagnostic. It is found that the Hall dynamo effect is significant, redistributing (flattening) the equilibrium core current near the resonant surface during a reconnection event. These results imply that effects beyond single-fluid MHD are important for the dynamo and magnetic reconnection.  相似文献   

15.
The role of single-particle dynamics in driven magnetic reconnection in collisionless plasmas is investigated experimentally and analytically. The trapping of particle orbits in the magnetic cusp is observed to allow fast reconnection in the absence of a macroscopic current layer, at a rate identical to that of vacuum. The development of an electrostatic potential structure around the magnetic X line during reconnection is predicted theoretically and observed experimentally.  相似文献   

16.
This paper reviews the basic principles and techniques involved in formulating particle-in-cell (PIC) simulation models which can be used to address medium- and large-scale problems in magnetosphere electrodynamics. The limitations imposed by the underlying kinetic physics of a plasma are emphasized, and representative algorithms are described for full particle and hybrid (particle ions, fluid electrons) models. Issues related to the choice of initial and boundary conditions and the implementation of PIC models on massively parallel computers are discussed. Explicit examples involving the diffusion region in collisionless reconnection, plasma sheet convection, and large scale structure in magnetic reconnection are presented to illustrate the current capabilities of PIC models  相似文献   

17.
The process of fast magnetic reconnection driven by intense ultra-short laser pulses in underdense plasma is investigated by particle-in-cell simulations. In the wakefield of such laser pulses, quasi-static magnetic fields at a few mega-Gauss are generated due to nonvanishing cross product ▽(n/) × p. Excited in an inhomogeneous plasma of decreasing density, the quasi-static magnetic field structure is shown to drift quickly both in lateral and longitudinal directions. When two parallel-propagating laser pulses with close focal spot separation are used, such field drifts can develop into magnetic reconnection(annihilation) in their overlapping region, resulting in the conversion of magnetic energy to kinetic energy of particles. The reconnection rate is found to be much higher than the value obtained in the Hall magnetic reconnection model. Our work proposes a potential way to study magnetic reconnection-related physics with short-pulse lasers of terawatt peak power only.  相似文献   

18.
等离子体融断开关磁场Hall渗透机制的模拟研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 利用自行研制的2-1/2维全电磁柱坐标粒子模拟程序对等离子体融断开关磁场渗透机制进行了模拟研究。模拟结果表明在磁场Hall渗透机制特征长度远远小于等离子体离子的无碰撞趋肤深度的条件下,等离子体内部磁场渗透过程主要由电子流体运动的Hall项来控制。对于等离子体空间分布存在较大的密度梯度的物理问题,必须考虑二维空间特性对磁场渗透速度的影响。在磁场已渗透经过的等离子体区域中,等离子体呈现非电中性,离子受静电场的作用会加速运动到达阴极,最终形成真空鞘层。  相似文献   

19.
The nature of collisionless reconnection in a three-species plasma composed of a heavy species, protons, and electrons is examined. In addition to the usual two length scales present in two-species reconnection, there are two additional larger length scales in the system: one associated with a "heavy whistler" which produces a large scale quadrupolar out-of-plane magnetic field, and one associated with the "heavy Alfvén" wave which can slow the outflow speed and thus the reconnection rate. The consequences for reconnection with O+ present in the magnetotail are discussed.  相似文献   

20.
Shear flows perpendicular to the anti-parallel reconnecting magnetic field are often observed in magnetosphere and interplanetary plasmas, and in laboratory plasmas toroidal differential rotations can also be generated in magnetic confinement devices. Our study finds that such shear flows can generate bipolar or quadrupolar out-of-plane magnetic field perturbations in a two-dimensional resistive MHD reconnection without the Hall effects. The quadrupolar structure has otherwise been thought a typical Hall MHD reconnection feature caused by the in-plane electron convection. The results will challenge the conventional understanding and satellite observations of the signature of reconnection evidences in space plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号