首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a previous work [#!ref1!#], the flow velocity of a steady two-dimensional granular flow along an inclined wall was investigated. The scaling law for the velocity field was found in good agreement with recent experimental results. The purpose of the present paper is to reformulate in more systematic manner and in a somewhat more general context the equations of mass and momentum conservation for dense granular flow, and also to present some new results with particular emphasis on roughness influence and dynamic dilatancy. Theoretical results are found in good agreement with experiments. Received 19 July 1999 and Received in final form 14 October 1999  相似文献   

2.
This paper considers the segregation of a granular mixture in a rotating drum. Extending a recent kinematic model for grain transport on sandpile surfaces to the case of rotating drums, an analysis is presented for radial segregation in the rolling regime, where a thin layer is avalanching down while the rest of the material follows rigid body rotation. We argue that segregation is driven not just by differences in the angle of repose of the species, as has been assumed in earlier investigations, but also by differences in the size and surface properties of the grains. The cases of grains differing only in size (slightly or widely) and only in surface properties are considered, and the predictions are in qualitative agreement with observations. The model yields results inconsistent with the assumptions for more general cases, and we speculate on how this may be corrected. Received 4 June 1999 and Received in final form 28 September 1999  相似文献   

3.
We report experimental results on the behavior of an ensemble of inelastically colliding particles, excited by a vibrated piston in a vertical cylinder. When the particle number is increased, we observe a transition from a regime where the particles have erratic motions (“granular gas”) to a collective behavior where all the particles bounce like a nearly solid body. In the gas-like regime, we measure the density of particles as a function of the altitude and the pressure as a function of the number N of particles. The atmosphere is found to be exponential far enough from the piston, and the “granular temperature”, T, dependence on the piston velocity, V, is of the form , where is a decreasing function of N. This may explain previous conflicting numerical results. Received 1 February 1999  相似文献   

4.
We have studied the maximal angle of stability of a granular packing confined between two walls. The effect of the walls is to increase the angle dramatically. The decay of the angle with the distance between the walls is exponential with a characteristic length which is a function of the beads diameter. The effect of the roughness of the walls has been also studied. Received 1 April 1999  相似文献   

5.
Dynamics of aeolian sand ripples   总被引:1,自引:0,他引:1  
We analyze theoretically the dynamics of aeolian sand ripples. In order to put the study in the context, we first review existing models. This paper is a continuation of two previous papers (Z. Csahók et al., Physica D 128, 87 (1999); A. Valance et al., Eur. Phys. J. B 10, 543 (1999)), the first one is based on symmetries and the second on a hydrodynamical model. We show how the hydrodynamical model may be modified to recover the missing terms that are dictated by symmetries. The symmetry and conservation arguments are powerful in that the form of the equation is model-independent. We then present an extensive numerical and analytical analysis of the generic sand ripple equation. We find that at the initial stage the wavelength of the ripple is that corresponding to the linearly most dangerous mode. At later stages the profile undergoes a coarsening process leading to a significant increase of the wavelength. We find that including the next higher-order nonlinear term in the equation leads naturally to a saturation of the local slope. We analyze both analytically and numerically the coarsening stage, in terms of a dynamical exponent for the mean wavelength increase. We discuss some future lines of investigations. Received 20 January 2000  相似文献   

6.
Humidity is well-known to significantly affect the mechanical properties, static as well as dynamic, of granular materials. We present the method of humidification of granular media from an under-saturated vapor that we designed in order to experimentally quantify such moisture-induced effects under accurately-controlled humidity conditions. We report the quantitative measurements of the maximum angle of stability of a pile made of small glass beads, as a function of the relative vapor pressure, up to close to saturation. The results obtained with liquids differing in their wetting properties on glass, namely water and heptane, are presented. It is shown that the wetting properties of the liquid on the grains have a strong influence on the cohesion of the non-saturated granular medium. Received 26 October 1998 and Received in final form 30 March 1999  相似文献   

7.
We investigate autogenous fragmentation of dry granular material in rotating cylinders using two-dimensional molecular dynamics. By evaluation of spatial force distributions achieved numerically for various rotation velocities we argue that comminution occurs mainly due to the existence of force chains. A statistical analysis of these force chains explains the spatial distribution of comminution efficiency in ball mills as measured experimentally by Rothkegel [1] and Rolf [2]. For animated sequences of our simulations see http://summa.physik.hu-berlin.de/kies/mill/bm.html Received 19 January 2000  相似文献   

8.
An experimental study of the behavior of one bead bouncing repeatedly off a static flat horizontal surface is presented. We observe that the number of bounces made by the bead is finite. When the duration between two successive bounces becomes of the order of the impact duration, the bead no longer bounces but oscillates on the elastically deformed surface before coming to rest. This transition is explained with a modified Hertz interaction law in which gravity is taken into account during the interaction. For each bounce, measurement of both the duration of collision and the restitution coefficient have been done. The effective restitution coefficient is essentially constant and close to 1 during almost all bounces before decreasing to zero when the impact velocity vanishes. This is due to an interplay between gravity and viscoelastic dissipation. Received: 2 December 1997 / Accepted: 5 March 1998  相似文献   

9.
An experimental study of the collision of a column of N beads () with a fixed wall is presented. For a fixed height of fall and a rigid wall, we show that the maximum force felt by the wall is independent of the number of beads N. The duration of impact, the velocity of the deformation wave in the column and an effective restitution coefficient of the column are also measured as a function of N. For a soft wall, we show that the maximum force depends on N. A non-dissipative numerical model, based on a nonlinear interaction law between nearest neighbours, gives results in agreement with the experimental data. Moreover, we show that, after the compression phase, the beads of the top of the column separate one after the other from the column with a velocity greater than the initial one. The beads at the bottom then bounce upwards in block, with a velocity smaller than the initial one. We emphasize that this detachment effect results from the energy redistribution within the whole system during the collision and not from any dissipative effect. Received: 6 February 1998 / Revised and accepted: 26 May 1998  相似文献   

10.
We show that two basic mechanical processes, the collision of particles and rolling motion of a sphere on a plane, are intimately related. According to our recent findings, the restitution coefficient for colliding spherical particles , which characterizes the energy loss upon collision, is directly related to the rolling friction coefficient for a viscous sphere on a hard plane. We quantify both coefficients in terms of material constants which allows to determine either of them provided the other is known. This relation between the coefficients may give rise to a novel experimental technique to determine alternatively the coefficient of restitution or the coefficient of rolling friction. Received 5 May 1999  相似文献   

11.
The force perturbation field in a two-dimensional pile of frictionless gravity-loaded discs or spheres arising from lattice distortions is derived to first order. The starting point is the model proposed by Liffman et al. (Powder Technology (1992) pp. 255-267) and Hong (Phys. Rev. E 47, 760-762 (1993)) in which discs of uniform size are arranged on a regular lattice: this predicts a uniform normal stress distribution at the base of the pile. The analysis is applied to two problems: (i) deformable (rather than rigid) grains that undergo Hertzian deformation at the points of contact; (ii) a pile containing a gradient in particle size from the centre to the free surfaces. The former results in the classical pressure dip at the centre; the latter also produces a dip if the larger particles are at the centre. Received 29 January 1998 and Received in final form 7 September 1998  相似文献   

12.
We study the segregation of granular mixtures in two-dimensional silos using a recently proposed set of coupled equations for surface flows of grains. We study the thick flow regime, where the grains are segregated in the rolling phase. We incorporate this dynamical segregation process, called kinematic sieving, free-surface segregation or percolation, into the theoretical formalism and calculate the profiles of the rolling species and the concentration of grains in the bulk in the steady state. Our solution shows the segregation of the mixture with the large grains being found at the bottom of the pile in qualitative agreement with experiments. Received: 6 July 1998 / Revised and Accepted: 13 August 1998  相似文献   

13.
We present the generalization of a theoretical model for segregation of granular mixtures due to surface flows, published in J. Phys. I France 6, 1295 (1996). Our generalized model is valid for grains differing by their size and/or their surface properties; in the present paper, we describe the case of two species with the same surface properties but two different sizes. The rolling stream is assumed to be homogeneous. Exchanges between the grains at rest and the rolling stream are modelized via binary collisions. The model predicts that during the filling of a two-dimensional silo, continuous segregation appears inside the static phase: small (respectively large) grains tend to stop uphill (respectively downhill), although both species remain present everywhere. This fits the observations when the size difference between the species is small. When the size difference is large, a different regime is observed. We argue that in this case, segregation occurs directly inside the rolling stream. Received: 25 February 1998 / Received in final form and Accepted: 6 July 1998  相似文献   

14.
We present the generalization of the minimal model for surface flows of granular mixtures, proposed by Boutreux and de Gennes [J. Phys. I France 6, 1295 (1996)]. The minimal model was valid for grains differing only in their surface properties. The present model also takes into account differences in the size of the grains. We apply the model to study segregation in two-dimensional silos of mixtures of grains differing in size and/or surface properties. When the difference in size is small, the model predicts that a continuous segregation appears in the static phase during the filling of a silo. When the difference in size is wide, we take into account the segregation of the grains in the rolling phase, and the model predicts complete segregation and stratification in agreement with experimental observations. Received 9 September 1998 and Received in final form 4 November 1998  相似文献   

15.
Mechanical properties of packings of deformable spheres of polyelectrolyte gel are studied experimentally. These particles are plunged into a brine. They have the property to swell and shrink when the concentration of salt of the solution is varied. An oedometric compression is performed imposing cycles of deformation at constant speed and constant salinity Cs. Under many different conditions, we study the laws of deformation relating the macroscopic compression force F, to the macroscopic strain . We find empirical non linear relations of the type . The values of this exponent m are discussed and compared to the results of measurements on a single sphere compressed on a plane as well as to the results of experiments and simulations on dry model granular assemblies. The swelling and deswelling properties of the spheres are used to perform isotropic compression tests. In this situation we determine the relation between the force at equilibrium and the macroscopic strain . The results are compared with those obtained in the oedometric compression tests. Received 27 January 1998  相似文献   

16.
A model for ripple instabilities in granular media   总被引:1,自引:0,他引:1  
We extend the model of surface granular flow proposed in [#!bcre!#] to account for the effect of an external `wind', which acts as to dislodge particles from the static bed, such that a stationary state of flowing grains is reached. We discuss in detail how this mechanism can be described in a phenomenological way, and show that a flat bed is linearly unstable against ripple formation in a certain region of parameter space. We focus in particular on the (realistic) case where the migration velocity of the instability is much smaller than the grains' velocity. In this limit, the full dispersion relation can be established. We relate the critical wave vector to the mean hopping length and to the ratio of the flight time to the `stick' time. We provide an intuitive interpretation of the instability. Received: 30 January 1998 / Revised: 12 May 1998 / Accepted: 8 June 1998  相似文献   

17.
Experimental investigations on the shape of a heap formed in a Hele Shaw cell either on a flat base or in a two-dimensional silo are presented. We have focused our attention on the shape dependence on mass flux and initial energy of particles poured into the cell. Two kinds of granular media are considered: glass beads and sand and we shall point out their different behaviors. We described the variations of the angle of repose and of the size of the tail as a function of the experimental parameters. We also report the time evolution of the angle of repose during the formation of the heap. Received 28 September 1998 and Received in final form 20 January 1999  相似文献   

18.
Fragmentation of grains in a two-dimensional packing   总被引:1,自引:0,他引:1  
A numerical model of fragmentation of a two-dimensional granular medium under pressure is investigated. The fragmentation process is found to be strongly dependent on the type of force used as the criterion for breaking the grains. The fragmentation mode affects the process less dramatically. There is a power-law divergence in the pressure when the medium approaches the full packing limit, . Both log-normal and power-law fragment-size distributions are found. Gravity is demonstrated to be an important factor. Received: 14 December 1997 / Accepted: 17 March 1998  相似文献   

19.
Starting from the phenomenological model for sand ripple formation developed in [#!Bouchaud98!#], we proposed a new interpretation in the light of recent experiments. Furthermore, we derive, close to the threshold of ripple instability, a nonlinear equation for the spatio-temporal evolution of the sand bed profile, which to leading order has a quadratic nonlinearity. This equation is identical to that derived recently on the basis of geometry and conservation law [#!Csahok98!#]. Our derivation connects the coefficients of the nonlinear equation to the underlying physical mechanisms (reptation length...). This equation reveals ripple structures which then undergo a coarsening process, as observed in wind tunnel experiment. Small, fast moving ripples are absorbed by larger, slower forms resulting in a growth of the mean wavelength. Received 5 January 1999  相似文献   

20.
In horizontally shaken granular material different types of pattern formation have been reported. We want to deal with the convection instability which has been observed in experiments and which recently has been investigated numerically. Using two dimensional molecular dynamics we show that the convection pattern depends crucially on the inelastic properties of the material. The concept of restitution coefficient provides arguments for the change of the behaviour with varying inelasticity. Received 3 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号