首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The method of the implicit standard material has allowed the formulation of a consistent mathematical model of the boundary value problem for the non-associated plasticity of soil. The mean accomplished steps are the achievement of the bipotential function, the recovering of the stress–strain relationship under a normality rule, introduction of the bifunctional and the proof of the solution existence. Here the mathematical model is discretized by the finite element method. First, the stress update scheme was formulated, the tangent matrix is explicitly derived and then the non-linear system is solved by the Newton–Raphson method where a new algorithm using a symmetrical tangent matrix is improved. This is in opposition to conventional non-associated plasticity, which uses a non-symmetric tangent matrix. Through the numerical examples we show the feasibility and the efficiency of the algorithm. It is also seen that we perform some studies of the numerical solutions, particularly the comparison between associated and non-associated limit load.  相似文献   

2.
Normal contact deformation of an asperity and a rigid flat is studied within an axisymmetric finite element model. The asperity features a sinusoidal profile and is elastic–plastic with linear strain hardening. Influences of geometrical (asperity height and width) and loading (the maximum interference) parameters on frictionless contact responses are explored for both loading and unloading. Dimensionless expressions for contact size and pressures covering a large range of interference and asperity ratio values are obtained in power-law forms. Results show the mean contact pressure after fully-plastic contact reaches a plateau only for small asperity ratios, while it continues increasing for large asperity ratios. The residual depth is found to be associated with plastically dissipated energy.  相似文献   

3.
We investigate the impact of the inexact interpolation on the Eulerian–Lagrangian solution of the advection equation by combining numerical experiments and formal analysis. The simulations, respectively, using the Eulerian–Lagrangian method (ELM) and the upwind scheme are compared. The artificial resistance of the ELM is observed which is characterised by the higher free-surface elevation and the distorted turbulent properties at a smaller time step. Through analysis, we find that the abnormalities are caused by the fact the conventional linear interpolation does not adapt well to the nonlinear velocity distribution, which produces an advection computation error that increases with a decreasing time step. The phenomena are explained and an improved method ELM is proposed based on the illustrations and analysis. The new method combines the face-controlled interpolation and the adjustable sub time steps to skip the large computation error domain in the backtracking, and it is validated by the original test case.  相似文献   

4.
The observation that the hyperbolic shallow water equations and the Green–Naghdi equations in Lagrangian coordinates have the form of an Euler–Lagrange equation with a natural Lagrangian allows us to apply Noether's theorem for constructing conservation laws for these equations. In this study the complete group analysis of these equations is given: admitted Lie groups of point and contact transformations, classification of the point symmetries and all invariant solutions are studied. For the hyperbolic shallow water equations new conservation laws which have no analog in Eulerian coordinates are obtained. Using Noether's theorem a new conservation law of the Green–Naghdi equations is found. The dependence of solutions on the parameter is illustrated by self-similar solutions which are invariant solutions of both models.  相似文献   

5.
In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.  相似文献   

6.
Wang  Yupin  Liu  Shutang 《Nonlinear dynamics》2019,95(2):1457-1470
Nonlinear Dynamics - This paper reports the investigation of a fractional Lotka–Volterra model from the fractal viewpoint. A Julia set of a discrete version of this model is introduced and...  相似文献   

7.
8.
Nonlinear Dynamics - In this paper, the extended Hindmarsh–Rose neuron model, which considers the slow intracellular exchange of calcium ions between its store and the cytoplasm, is studied....  相似文献   

9.
Ironmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas–solid flow in an oxygen blast furnace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (SIG) flowrate to total gas flowrate on the SIG penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center.  相似文献   

10.

We consider the classic spring–mass model of running which is built upon an inverted elastic pendulum. In a natural way, there arises an interesting boundary value problem for the governing system of two nonlinear ordinary differential equations. It requires us to choose the stiffness to ascertain that after a complete step, the spring returns to its equilibrium position. Motivated by numerical calculations and real data, we conduct a rigorous asymptotic analysis in terms of the Poicaré–Lindstedt series. The perturbation expansion is furnished by an interplay of two time scales what has an significant impact on the order of convergence. Further, we use these asymptotic estimates to prove that there exists a unique solution to the aforementioned boundary value problem and provide an approximation to the sought stiffness. Our results rigorously explain several observations made by other researchers concerning the dependence of stiffness on the initial angle of the stride and its velocity. The theory is illustrated with a number of numerical calculations.

  相似文献   

11.
In this work a velocity-dependent friction is introduced into a depth-averaged Savage–Hutter dynamical model for shallow granular flows. The process of granular material flowing along an inclined plane and then depositing on a horizontal plane is simulated. The surface profiles and evolution of various types of energy are investigated and compared when using the standard Coulomb-type friction versus velocity-dependent friction. Interestingly, there is a small difference between the two different types of friction.  相似文献   

12.
Denoting by the stress tensor, by the linearized strain tensor, by A the elasticity tensor, and assuming that is a convex potential, the inclusion accounts for nonlinear viscoelasticity, and encompasses both the linear Kelvin–Voigt model of solid-type viscoelasticity and the Prager model of rigid plasticity with linear kinematic strain-hardening. This relation is assumed to represent the constitutive behavior of a space-distributed system, and is here coupled with the dynamical equation. An initial- and boundary-value problem is formulated, and the existence and uniqueness of the solution are proved via classical techniques based on compactness and monotonicity. A composite material is then considered, in which the function and the tensor A rapidly oscillate in space. A two-scale model is derived via Nguetseng’s notion of two-scale convergence. This provides a detailed account of the mesoscopic state of the system. Any dependence on the fine-scale variable is then eliminated, and the existence of a solution of a new single-scale macroscopic model is proved. The final outcome is at variance with the nonlinear extension of the generalized Kelvin–Voigt model, which is based on an apparently unjustified mean-field-type hypothesis.  相似文献   

13.
In this paper, the aeroelastic analyses of a rectangular cantilever plate of varying aspect ratio is presented. The classical plate theory has been selected as the structural model. The main point that distinguishes this study from previously reported research is employing Peters’ theory to model aerodynamic effect which is not straightforward. The Peters’ aerodynamic model was originally developed to provide lift and moment, which is only applicable to the structural model based on the beam theories. In this study, using the basic concept of the Peters’ aerodynamic model in addition to utilizing the Fourier series, the pressure distribution is derived, which makes Peters’ model applicable to structural models based on plate theory. This combination provides a much simpler state–space aeroelastic model for plates in comparison to the prevalent panel methods, which could lead to a significant reduction in computational time. In addition, the aeroelastic response of the plate with respect to changes in the structural model from the beam theory to the plate theory is evaluated. By using data from an experiment carried out at Duke University, the theoretical results are evaluated. Furthermore, the differences in structural models obtained from the plate and beam theories can be divided into two distinct parts, which are responsible for differences in bending and torsional behaviors of the structure, separately. This approach enables us to measure the effects of differences of each behavior separately, which could provide with a new insight into the problem. It has been determined that the flutter speeds obtained from the beam and plate aeroelastic models are little affected by the difference in bending behavior, but rather is mainly caused by the difference in torsional frequencies.  相似文献   

14.
It is reasonable to develop models and to investigate the dynamic behaviour of systems composed of cables since cable vibration can have an important effect on the motion of these mechanical systems. This paper deals with the application of the nonlinear formulation for flexible body dynamics called the absolute nodal coordinate formulation (ANCF). It is used for modelling the systems composed of cables, pulleys, other rigid bodies and a motor with prescribed motion. The ANCF was chosen as a suitable approach, which that can allow to consider a detailed interaction of the cable and the pulley with its nonlinear dynamical behaviour. The ANCF uses absolute positions of nodes (reference vectors) and slopes (reference vector derivations) as a set of nodal coordinates. An in-house modelling tool in the MATLAB system was created based on the proposed modelling methodology and two case studies were performed. A simple system containing a pulley and a cable with two attached bodies was used in order to test the simulation tool based on the proposed modelling methodology with respect to different parameters. A more complex mechanical system composed of a driven weight joined with a motor by a cable led over a pulley was numerically and also experimentally investigated. The comparison of obtained numerical and experimental results shows sufficient agreement and proves that the proposed modelling approach can be used for dynamic analyses of such systems.  相似文献   

15.
The present paper considers the problem of buckling of a beam of finite width that is embedded in bonded contact with an isotropic elastic solid. Analysis of the buckling problem is restricted to the class of slender beams of narrow width that exhibit flexure only in the longitudinal direction. The governing integral equations are solved in an approximate fashion. Numerical results presented indicate the manner in which the buckling load is influenced by the relative flexibility of the beam-elastic medium system.  相似文献   

16.
In this paper we present a numerical model for the coarse-grid simulation of turbulent liquid jet breakup using an Eulerian–Lagrangian coupling. To picture the unresolved droplet formation near the liquid jet interface in the case of coarse grids we considered a theoretical model to describe the unresolved flow instabilities leading to turbulent breakup. These entrained droplets are then represented by an Eulerian–Lagrangian hybrid concept. On the one hand, we used a volume of fluid method (VOF) to characterize the global spreading and the initiation of droplet formation; one the other hand, Lagrangian droplets are released at the liquid–gas interface according to the theoretical model balancing consolidating and disruptive energies. Here, a numerical coupling was required between Eulerian liquid core and Lagrangian droplets using mass and momentum source terms. The presented methodology was tested for different liquid jets in Rayleigh, wind-induced and atomization regimes and validated against literature data. This comparison reveals fairly good qualitative agreement in the cases of jet spreading, jet instability and jet breakup as well as relatively accurate size distribution and Sauter mean diameter (SMD) of the droplets. Furthermore, the model was able to capture the regime transitions from Rayleigh instability to atomization appropriately. Finally, the presented sub-grid model predicts the effect of the gas-phase pressure on the droplet sizes very well.  相似文献   

17.
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic–viscoplastic constitutive relation with various hardening–softening–hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip.On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening(or softening–hardening) has a particularly strong effect on the near crack tip stress and deformation fields.  相似文献   

18.
In this study, an inverse method based on the Levenberg–Marquardt algorithm was evaluated in a numerical experiment to determine the large strain viscoelastic properties from the bubble inflation test. The properties were determined by iteratively matching the calculated bubble pressure–piston displacement data from finite element simulations to a single set of bubble pressure–piston displacement data. The strain-dependent behaviour was characterised by a two-parameter Mooney–Rivlin hyperelastic model, while the time-dependent behaviour was characterised by a three-parameter power law equation. Different initial guesses were used to evaluate the inverse method, and transformation functions were applied to constrain the intermediate guesses to be within bounds. It was found that estimates of the viscoelastic properties could be obtained reasonably using only one set of bubble pressure–piston displacement data. Estimates of the properties were likely affected by the limited time duration of the test, as the behaviour at shorter and particularly larger time scales was less accurately predicted.  相似文献   

19.
A computational thermo-metallographic and thermoelastoplastic model for the analysis of the quenching process is developed and validated. The diffusive transfor-mations are modeled according to the Johnson–Mehl–Avrami–Kolmogorov model and the Scheil’s additivity rule. Two different models are investigated for the non-diffusive transformation—the Koistinen–Marburger model and the Yu model. A large displacement formulation is assumed for the deformation analysis, modeling the plastic behavior of the material according to the Prandtl–Reuss model. Two different bilinear hardening models—the isotropic and the kinematic hardening model—are used and compared. The model allows to evaluate the transient stress and strain distributions during the quenching process, the final phases and hardness distributions, and to predict the residual stress and the final deformation of the processed part. A good agreement between computational results and reference data is found  相似文献   

20.
The paper deals with calculation of a plastic zone near a crack tip in a homogeneous elastoplastic solid and near a corner point of the boundary of this solid. The calculations are conducted for a solid subject to plane strain and within the framework of models with plastic strips. It is shown that in comparison with the widely used model with two straight slip-lines, the process of plastic deformation is described by the “trident” model more accurately. The results of calculations of the plastic zone by the “trident” model that correspond to different stages of the development of plastic deformation are given for a crack of normal separation in a quasibrittle material. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 3, pp. 95–100, March, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号