首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plastic size effects in single crystals are investi-gated by using finite strain and small strain discrete dislo-cation plasticity to analyse the response of cantilever beam specimens. Crystals with both one and two active slip sys-tems are analysed, as well as specimens with different beam aspect ratios. Over the range of specimen sizes analysed here, the bending stress versus applied tip displacement response has a strong hardening plastic component. This hardening rate increases with decreasing specimen size. The hardening rates are slightly lower when the finite strain discrete disloca-tion plasticity (DDP) formulation is employed as curving of the slip planes is accounted for in the finite strain formulation. This relaxes the back-stresses in the dislocation pile-ups and thereby reduces the hardening rate. Our calculations show that in line with the pure bending case, the bending stress in cantilever bending displays a plastic size dependence. How-ever, unlike pure bending, the bending flow strength of the larger aspect ratio cantilever beams is appreciably smaller. This is attributed to the fact that for the same applied bend-ing stress, longer beams have lower shear forces acting upon them and this results in a lower density of statistically stored dislocations.  相似文献   

2.
应用高灵敏度的力传感器以及时间序列电子散斑干涉法,同时测出了不同厚度纯镍薄片三点 弯曲试件的抗力与变形,得到薄梁中心点处的载荷与挠度曲线. 应用Fleck和Hutchinson 的偶应力理论,结合平面应变弯曲模型,建立了薄梁处于弹性状态和弹塑性状态的 控制方程, 应用Runge-Kutta法进行数值求解,并将计算得到的载荷-挠度曲线以及无量纲化弯矩-表面 应变曲线和实验结果进行了比较. 在理论计算过程中,没有拟合任何材料参数,所有的材料 参数均来自实验测量的结果,材料特征尺度也是根据Stolken和Evans的工作给出 的. 结果表明: 应用偶应力理论预测的结果和实验结果符合良好,而经典理论的预测结果与 实验不相符合.  相似文献   

3.
4.
Experiments and theory in strain gradient elasticity   总被引:2,自引:0,他引:2  
Conventional strain-based mechanics theory does not account for contributions from strain gradients. Failure to include strain gradient contributions can lead to underestimates of stresses and size-dependent behaviors in small-scale structures. In this paper, a new set of higher-order metrics is developed to characterize strain gradient behaviors. This set enables the application of the higher-order equilibrium conditions to strain gradient elasticity theory and reduces the number of independent elastic length scale parameters from five to three. On the basis of this new strain gradient theory, a strain gradient elastic bending theory for plane-strain beams is developed. Solutions for cantilever bending with a moment and line force applied at the free end are constructed based on the new higher-order bending theory. In classical bending theory, the normalized bending rigidity is independent of the length and thickness of the beam. In the solutions developed from the higher-order bending theory, the normalized higher-order bending rigidity has a new dependence on the thickness of the beam and on a higher-order bending parameter, bh. To determine the significance of the size dependence, we fabricated micron-sized beams and conducted bending tests using a nanoindenter. We found that the normalized beam rigidity exhibited an inverse squared dependence on the beam's thickness as predicted by the strain gradient elastic bending theory, and that the higher-order bending parameter, bh, is on the micron-scale. Potential errors from the experiments, model and fabrication were estimated and determined to be small relative to the observed increase in beam's bending rigidity. The present results indicate that the elastic strain gradient effect is significant in elastic deformation of small-scale structures.  相似文献   

5.
Microbending experiments of pure aluminum show that the springback angles increase with the decrease of foil thickness, which indicates obvious size effects and attributes to plastic strain gradient hardening. Then a constitutive model, taking into accounts both plastic strain and plastic strain gradient hardening, is proposed to analyze the microbending process of thin foil. The model is based on the relationship between shear yield stress and dislocation density, in which the material intrinsic length is related to material properties and average grain numbers along the characteristic scale direction of part. It is adopted in analytical model to calculate the non-dimensional bending moment and predict the springback angle after microbending. It is confirmed that the predictions by the proposed hardening model agree well with the experimental data, while those predicted by the classical plasticity model cannot capture such size effects. The contribution of plastic strain gradient increases with the decrease of foil thickness and is independent on the bending angle.  相似文献   

6.
7.
蒋平 《爆炸与冲击》1993,13(4):343-350
阐述了用实验确定在常温及静载和动载条件下韧性撕裂在三种管线钢材中传播时的断裂比能值。实验中采用了销钉加载双面开槽的双悬脊梁(DCB)试件。应用能量平衡法对实验结果进行了分析。考察了加载速率和试件厚度对撕裂韧性的影响。结果表明,管线钢材对韧性撕裂传播的阻力在动载条件下增大,对较薄的试件及应变率敏感性较高的材料其增大更为明显。对于纯剪切断裂的传播来说,撕裂韧性一般随试件厚度的增大而增加。  相似文献   

8.
Bending analysis of micro-sized beams based on the Bernoulli-Euler beam theory is presented within the modified strain gradient elasticity and modified couple stress theories. The governing equations and the related boundary conditions are derived from the variational principles. These equations are solved analytically for deflection, bending, and rotation responses of micro-sized beams. Propped cantilever, both ends clamped, both ends simply supported, and cantilever cases are taken into consideration as boundary conditions. The influence of size effect and additional material parameters on the static response of micro-sized beams in bending is examined. The effect of Poisson’s ratio is also investigated in detail. It is concluded from the results that the bending values obtained by these higher-order elasticity theories have a significant difference with those calculated by the classical elasticity theory.  相似文献   

9.
The purpose of this paper is to demonstrate the improved modeling accuracy of a finite-deformation strain gradient crystal plasticity formulation over its classical counterpart by conducting a joint experimental and numerical investigation of the microscopic details of the deformation of a whisker-reinforced metal-matrix composite. The lattice rotation distribution around whiskers is obtained in thin foils using a TEM technique and is then correlated with numerical predictions based on finite element analyses of a unit-cell of a single crystal matrix containing a rigid whisker. The matrix material is first characterized by a classical, scale-independent crystal plasticity theory. It is found that the classical theory predicts a lattice rotation distribution with a spatial gradient much higher than experimentally measured. A strain gradient crystal plasticity formulation is then applied to model the matrix. The strain gradient formulation accounts for both strain hardening and strain gradient hardening. The deformation thus predicted exhibits a strong dependence on the size of the whisker. For a constitutive length scale comparable to the whisker diameter, the spatial gradient of the lattice rotation is several times lower than that predicted by the classical theory, and hence correlates significantly better with the experimental results.  相似文献   

10.
We study an idealized bending problem where two types of size effects are present – one induced by the non-uniform (macro) deformation, the other due to the (internal) resistance at grain boundaries. Classical models are not able to capture either of the two types of size dependent behavior. A remedy is to adopt a gradient crystal plasticity formulation which allows one to study the direct influence of different microstructural properties on the material response. However, it is computationally expensive to do so for a typical engineering problem since the discretization has to be done at a sub-granular level. In this paper, a homogenization theory is proposed such that the small deformation gradient crystal plasticity framework by Cermelli and Gurtin [Cermelli, P., Gurtin, M.E., 2002. Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations. Int. J. Solids Struct. 39, 6281–6309] translates from the micro to macro level consistently. Microstructural properties thus propagate naturally to the macro scale and the homogenized solutions compare well with the fine scale analyses for the two limit cases – microhard and microfree conditions. Three length scale parameters, i.e. the intrinsic length scale, grain size and the foil thickness, manifest themselves in the homogenized solution, thus capturing both types of size effects. We further discuss on the interplay and competition between the two size effects.  相似文献   

11.
In computational analysis of damage failure the strain delocalizations are of great importance in predicting assessment of structure integrity. In this paper we are investigating effects of the intrinsic material length on computational prediction of material failure using both cell model, i.e. the conventional micro-mechanical damage model with the constant–sized finite elements for the damage zones, and nonlocal damage model based on the gradient plasticity. The corresponding experiments performed for an engineering steel are taken as reference for verification. The experimental observation has revealed that reducing the specimen size will arise the specific strength of small notched specimen which cannot be predicted using the cell damage model. The nonlocal damage model based on the strain gradient-dependent constitutive plasticity theory reproduces the experimental records. The material length affects evolution of the material porosity and gives an understandable explanation of the size effect.  相似文献   

12.
A micro scale Timoshenko beam model is developed based on strain gradient elasticity theory. Governing equations, initial conditions and boundary conditions are derived simultaneously by using Hamilton's principle. The new model incorporated with Poisson effect contains three material length scale parameters and can consequently capture the size effect. This model can degenerate into the modified couple stress Timoshenko beam model or even the classical Timoshenko beam model if two or all material length scale parameters are taken to be zero respectively. In addition, the newly developed model recovers the micro scale Bernoulli–Euler beam model when shear deformation is ignored. To illustrate the new model, the static bending and free vibration problems of a simply supported micro scale Timoshenko beam are solved respectively. Numerical results reveal that the differences in the deflection, rotation and natural frequency predicted by the present model and the other two reduced Timoshenko models are large as the beam thickness is comparable to the material length scale parameter. These differences, however, are decreasing or even diminishing with the increase of the beam thickness. In addition, Poisson effect on the beam deflection, rotation and natural frequency possesses an interesting “extreme point” phenomenon, which is quite different from that predicted by the classical Timoshenko beam model.  相似文献   

13.
Size-dependent large curvature pure bending of thin metallic films has been analytically studied taking into account the associated strengthening mechanisms at different thickness scales. The classical plasticity theory is applicable to films thicker than 100 μm. Consequently, their bending capacity is governed by the competition between the material hardening and the thickness reduction. For films with a thickness ranging from fractions of a micron to a few microns, in addition to the above mechanisms, the strain gradient effect plays an important role and introduces an internal length scale. When the film thickness reduces to the nano-scale, the strain gradient effect is gradually replaced by the dominant surface stress/energy effect.  相似文献   

14.
A finite deformation theory of mechanism-based strain gradient (MSG) plasticity is developed in this paper based on the Taylor dislocation model. The theory ensures the proper decomposition of deformation in order to exclude the volumetric deformation from the strain gradient tensor since the latter represents the density of geometrically necessary dislocations. The solution for a thin cylinder under large torsion is obtained. The numerical method is used to investigate the finite deformation crack tip field in MSG plasticity. It is established that the stress level around a crack tip in MSG plasticity is significantly higher than its counterpart (i.e. HRR field) in classical plasticity.  相似文献   

15.
In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable to predict the mechanical behavior accurately when the characteristic size of structures is close to the material length scale parameter. The governing differential equations of motion are derived for the couple-stress Timoshenko beam using the principles of linear and angular momentum. Then, the general form of boundary conditions and generally valid closed-form analytical solutions are obtained for the axial deformation, bending deflection, and the rotation angle of cross sections in the static cases. As an example, the closed-form analytical results are obtained for the response of a cantilever beam subjected to a static loading with a concentrated force at its free end. The results indicate that modeling on the basis of the couple stress theory causes more stiffness than modeling by the classical beam theory. In addition, the results indicate that the differences between the results of the proposed model and those based on the classical Euler–Bernoulli and classical Timoshenko beam theories are significant when the beam thickness is comparable to its material length scale parameter.  相似文献   

16.
Plastic deformation exhibits strong size dependence at the micron scale, as observed in micro-torsion, bending, and indentation experiments. Classical plasticity theories, which possess no internal material lengths, cannot explain this size dependence. Based on dislocation mechanics, strain gradient plasticity theories have been developed for micron-scale applications. These theories, however, have been limited to infinitesimal deformation, even though the micro-scale experiments involve rather large strains and rotations. In this paper, we propose a finite deformation theory of strain gradient plasticity. The kinematics relations (including strain gradients), equilibrium equations, and constitutive laws are expressed in the reference configuration. The finite deformation strain gradient theory is used to model micro-indentation with results agreeing very well with the experimental data. We show that the finite deformation effect is not very significant for modeling micro-indentation experiments.  相似文献   

17.
A series of systematic tensile and microbend tests were conducted on copper foil specimens with different thicknesses. The specimens were made of a copper foil having almost unidirectional crystal orientations that was considered to be nearly single-crystal. In order to investigate the effects of slip system interactions, two different crystal orientations relative to the tensile direction were considered in the tests: one is close to coplanar double-slip orientation, and the other is close to the ideal cube orientation (the tensile direction nearly coincides to [0 0 1]) that yields multi-planar multi-slip deformation. We extended the microbend test method to include the reversal of bending, and we attempted to divide the total amount of strain-hardening into isotropic and kinematic hardening components. In the tensile tests, no systematic tendency of size dependence was observed. In the microbend tests, size-dependent kinematic hardening behavior was observed for both the crystal orientations, while size dependence of isotropic hardening was observed only for the multi-planar multi-slip case. We introduce an extended crystal plasticity model that accounts for the effects of the geometrically necessary dislocations (GNDs), which correspond to the spatial gradients of crystallographic slips. Through numerical simulations performed using the model, the origin of the size-dependent behavior observed in the microbend tests is discussed.  相似文献   

18.
A further development of the mechanism-based strain gradient plasticity model well established in literature is reported. The major new element is the inclusion of the cell size effect in dislocation cell forming materials. It is based on a ‘phase mixture’ approach in which the dislocation cell interiors and dislocation cell walls are treated as separate ‘phases’. The model was applied to indentation testing of copper severely pre-strained by equal channel angular pressing. The deformation behaviour and the intrinsic length scale parameter of the gradient plasticity model were related to the micro-structural characteristics, notably the dislocation cell size, resulting from the deformation history of the material.  相似文献   

19.
On the basis of the modified strain gradient elasticity theory, the free vibration characteristics of curved microbeams made of functionally graded materials (FGMs) whose material properties vary in the thickness direction are investigated. A size-dependent first-order shear deformation beam model is developed containing three internal material length scale parameters to incorporate small-scale effect. Through Hamilton’s principle, the higher-order governing equations of motion and boundary conditions are derived. Natural frequencies of FGM curved microbeams corresponding to different mode numbers are evaluated for over a wide range of material property gradient index, dimensionless length scale parameter and aspect ratio. Moreover, the results obtained via the present non-classical first-order shear deformation beam model are compared with those of degenerated beam models based on the modified couple stress and the classical theories. It is found that the difference between the natural frequencies predicted by the various beam models is more significant for lower values of dimensionless length scale parameter and higher values of mode number.  相似文献   

20.
Validating stress intensity factor solutions for combined tension and bending is an arduous task because the necessary experimental data are not readily available. Toward this end, a tension and bending test specimen was designed to produce controllable levels of both tension stress and bending stress at the crack location. The specimen was made from 2024-T3 clad aluminum, which is commonly used in aircraft structures. The need for testing multiple specimens of various geometries and stress levels prompted the development of an analytical tool for specimen design. An extention of the Schijve line model, based on simple beam theory, was developed to calculate the stress distributions of tension and bending through the length of the specimen. A comparison of measured static strain levels with those predicted by the model showed the model to be accurate to within 5 percent, confirming its efficacy for specimen design. As expected, for the same remote stress (100 MPa), cracks in the tension and bending specimens grew faster than those in middle-cracked tension specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号