首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The main focus of this paper is to develop a physics-based model for a closed-chain manipulator in an excavator vehicle. The derivation of closed-chain manipulator dynamic equations with a structure similar to open-chain manipulator equations is an important research problem, particularly with reference to controller design. In this paper, an approach for deriving closed-chain manipulator equations with an open-chain structure, based on trigonometric t-formulae, is presented. Holonomic loop closure constraints are employed in order to derive the closed-chain mechanism dynamics from the reduced system dynamics. The closed-chain equations, with a structure similar to serial link equations, are presented. The model incorporates the dynamic properties of the manipulator and bucket. The dynamic model for the excavation system is validated against measured data obtained from a full-scale closed-chain excavator vehicle. A dynamic model is important for the design of control strategies for trajectory tracking, a key requirement for automating the excavation task. It is noted that even though the results presented in this paper are focused on a particular excavator vehicle, the research is generic and can be adapted to any closed-chain manipulator.  相似文献   

2.
The one-velocity model equations for a heterogeneous medium are presented that take into account the internal forces of interfractional interactions and heat and mass exchange. The shock adiabat obtained for the mixture agrees with the one-velocity model equations. For one-dimensional unsteady adiabatic flows, the characteristic equations are found and relations along characteristic directions are determined. It is shown that the model equations with allowance for interfractional interaction forces are hyperbolic. Several finite-difference and finite-volume schemes designed for integrating the model equations are discussed.  相似文献   

3.
This paper considers a recently proposed interval algebraic model of linear equilibrium equations in mechanics. Based on the algebraic completion of classical interval arithmetic (called Kaucher arithmetic), this model provides much smaller ranges for the unknowns than the model based on classical interval arithmetic and fully conforms to the equilibrium principle. The general form of interval equilibrium equations for truss structures is presented. Two numerical approaches for finding the formal (algebraic) solution to the considered class of interval equilibrium equations are proposed. A methodology for adjusting interval parameters so that the equilibrium equations be completely satisfied is also presented. Numerical examples illustrate the theoretical considerations.  相似文献   

4.
In the present paper, a kinetic model for vehicular traffic is presented and investigated in detail. For this model, the stationary distributions can be determined explicitly. A derivation of associated macroscopic traffic flow equations from the kinetic equation is given. The coefficients appearing in these equations are identified from the solutions of the underlying stationary kinetic equation and are given explicitly. Moreover, numerical experiments and comparisons between different macroscopic models are presented.  相似文献   

5.
In this paper, we investigate some new properties of the incompressible Euler and Navier-Stokes equations by studying a 3D model for axisymmetric 3D incompressible Euler and Navier-Stokes equations with swirl. The 3D model is derived by reformulating the axisymmetric 3D incompressible Euler and Navier-Stokes equations and then neglecting the convection term of the resulting equations. Some properties of this 3D model are reviewed. Finally, some potential features of the incompressible Euler and Navier-Stokes equations such as the stabilizing effect of the convection are presented.  相似文献   

6.
This paper is concerned with the numerical solution of the equations governing two-phase gas-solid mixture in the framework of thermodynamically compatible systems theory. The equations constitute a non-homogeneous system of nonlinear hyperbolic conservation laws. A total variation diminishing (TVD) slope limiter centre (SLIC) numerical scheme, based on the splitting approach, is presented and applied for the solution of the initial-boundary value problem for the equations. The model equations and the numerical methods are systematically assessed through a series of numerical test cases. Strong numerical evidence shows that the model and the methods are accurate, robust and conservative. The model correctly describes the formations of shocks and rarefactions in two-phase gas-solid flow.  相似文献   

7.
A new stochastic model for the point kinetics equations with I-delayed neutron precursor groups is presented. In this stochastic model, the point kinetics equations are separated into three terms: prompt neutrons, delayed neutrons and external neutrons source. The matrix form of the efficient stochastic model is solved by a semi-analytical method. The semi-analytical method is based on the exponential function of the coefficient matrix. The eigenvalues of the coefficient matrix and Gaussian elimination are used to calculate this exponential function. The mean and standard deviation of neutron and precursor populations of the efficient stochastic model with step, ramp, and sinusoidal reactivities are computed. The results of the efficient stochastic model are compared with the results of Allen's stochastic model for the point kinetics equations. This comparison confirms that the efficient stochastic model is an accurate model compared with the deterministic point kinetics equations. This stochastic model is efficient to study the natural behavior of neutron and precursor populations in the nuclear reactor dynamics.  相似文献   

8.
Based on Bear-Bachmat porous medium model, the governing equations for the migration of gases through soil from a buried source are presented. A finite element solution system for the equations is developed. The resulting model is capable of incorporating medium anistropy and inhomogeneity in an axisymmetric configuration. The model has facilities for including time-varying fluid properties and boundary conditions. Convergence of the solution is examined. Potential applications for the modelling of gas migration from waste burial sites and the evaluation of control mechanisms are discussed.  相似文献   

9.
A Stefan problem modelling crystal dissolution and precipitation   总被引:1,自引:0,他引:1  
A simple 1D model for crystal dissolution and precipitationis presented. The model equations resemble a one-phase Stefanproblem and involve non-linear and multivalued exchange ratesat the free boundary. The original equations are formulatedon a variable domain. By transforming the model to a fixed domainand applying a regularization, we prove the existence and uniquenessof a solution. The paper is concluded by numerical simulations.  相似文献   

10.
The dynamic behavior of a continuously stirred tank reactor (CSTR) with an exothermic reversible reaction is studied. The balance equations of the reaction lead to a set of highly nonlinear differential equations. For system analysis and control synthesis the dynamic equation are rewritten as state space model. From this nonlinear model a bilinear model is derived. Then, two optimization problems are solved: The time optimal problem for the nonlinear model and the quadratic problem for the bilinear model. In case of the finite time bilinear-quadratic problem a modified Riccati approximation algorithm for a stabilizing feedback controller is presented.  相似文献   

11.
A discrete-time model for an age-structured population in a patch-type environment is presented and analyzed. Comparison techniques for difference equations are used to find sufficient conditions for population persistence or extinction. The persistence and extinction theorem is used to define the critical patch number, the threshold for population persistence. Several examples are presented which illustrate the results of the theorems. The model is applied to a watersnake population.  相似文献   

12.
A 1-D model of a slab of glass of a small thickness is considered. The governing equations are those of the classical 1-D linear viscoelasticity. A load due to the temperature gradients is assumed. The aim is to model the process called annealing. It is shown that an additional load due to structural strain is crucial for the success of the model. Algorithms of a numerical solution of the governing equations are proposed. Numerical results are presented and commented.  相似文献   

13.
This paper presents methods for model conversions of continuous-time state-space equations and discrete-time state-space equations. An improved geometric-series method is presented for converting continuous-time models to equivalent discrete-time models. Also, a direct truncation method, a matrix continued fraction method and a geometric-series method are presented for converting discrete models to equivalent continuous models. As a result, many well-developed theorems and methods in either continuous or discrete domains can be effectively applied to a suitable model in either domain.  相似文献   

14.
In this paper, the developed model of an N-flexible-link mobile manipulator with revolute-prismatic joints is presented for the cooperative flexible multi mobile manipulator. In this model, the deformation of flexible links is calculated by using the assumed modes method. In additions, non-holonomic constraints of the robots’ mobile platforms that bound its locomotion are considered. This limitation is alleviated through the concurrent motion of revolute and prismatic joints, although it results in computational complexity and changes the final motion equations to time-varying form. Not only is the proposed dynamic model implemented for the multi-mobile manipulators with arms having independent motion, but also for multi-mobile manipulators in cooperation after defining gripper's kinematic constraints. These constraints are imported to the dynamic equations by defining Lagrange multipliers. The recursive Gibbs–Appell formulation is preferred over other similar approaches owing to the capability of solving the equations without the need to use Lagrange multipliers for eliminating non-holonomic constraints in addition to the novel optimized process of obtaining system equations. Hence, cumbersome simultaneous computations for eliminating the constraints of platform and arms are circumvented. Therefore, this formulation is improved for the first time by importing Lagrange multipliers for solving kinematic constrained systems. In the simulation section, the results of forward dynamics solution for two flexible single-arm manipulators with revolute-prismatic joints while carrying a rigid object are presented. Inverse dynamics equations of the system are also presented to obtain the maximum dynamic load-carrying capacity of the two-rigid-link mobile manipulators on a predefined path. Two constraints, namely the capacity of joint motors torque and robot motion stability are considered as the limitation criteria. The concluded motion equations are used to accurately control the movement of sensitive bodies, which is not achievable through the use of one platform.  相似文献   

15.
16.
In this paper, a fully coupled finite volume-finite element model for a deforming porous medium interacting with the flow of two immiscible pore fluids is presented. The basic equations describing the system are derived based on the averaging theory. Applying the standard Galerkin finite element method to solve this system of partial differential equations does not conserve mass locally. A non-conservative method may cause some accuracy and stability problems. The control volume based finite element technique that satisfies local mass conservation of the flow equations can be an appropriate alternative. Full coupling of control volume based finite element and the standard finite element techniques to solve the multiphase flow and geomechanical equilibrium equations is the main goal of this paper. The accuracy and efficiency of the method are verified by studying several examples for which analytical or numerical solutions are available. The effect of mesh orientation is investigated by simulating a benchmark water-flooding problem. A representative example is also presented to demonstrate the capability of the model to simulate the behavior in heterogeneous porous media.  相似文献   

17.
基于隐式离散极大值原理的聚合物驱最优注入策略   总被引:2,自引:1,他引:1  
为了获得聚合物驱油的最大利润,建立了确定最佳聚合物注入浓度的最优控制模型.利用全隐式差分格式将连续模型离散化得到离散系统的状态方程.通过隐含离散系统的极大值原理获得了该最优控制问题的必要条件.给出了基于梯度的数值求解方法,在求解状态方程的过程中直接构造了伴随问题的系数矩阵.通过一个三维聚合物驱模型的计算实例表明了所提出方法的可行性和有效性.  相似文献   

18.
We present studies on the mathematical properties of a multigroup formulation of the Bloch–Boltzmann–Peierls equations. The considered model equations are based on a general carrier dispersion law and contain the full quantum statistics of both the carriers and the phonons. Moreover, the transport model allows the investigation of particle distributions with arbitrary anisotropy with respect to the main direction. We prove the boundedness of the solution according to the Pauli principle and study the conservational properties of the multigroup equations. In addition, the existence of a Lyapounov functional to the proposed model equations is proved and expressions for the equilibrium solution are given. Numerical results are presented for the stationary state distributions of a coupled system of electrons and longitudinal optical phonons in GaAs.  相似文献   

19.
In this paper we consider an incompressible version of the two-fluid network model proposed by Porsching (Nu. Methods Part. Diff. Eq., 1 , 295–313 [1985]). The system of equations governing the model is a mixed system of differential and algebraic equations (DAEs). These DAEs are then recast, through proper transformation, into a system of ordinary differential equations on a submanifold of ?n, for which uniqueness, existence, and stability theorems are proved. Numerical simulations are presented.  相似文献   

20.
A planar vertical truck model with nonlinear suspension and its multibody system formulation are presented. The equations of motion of the model form a system of differential-algebraic equations (DAEs). All equations are given explicitly, including a complete set of parameter values, consistent initial values, and a sample road excitation. Thus the truck model allows various investigations of the specific DAE effects and represents a test problem for algorithms in control theory, mechanics of multibody systems, and numerical analysis. Several numerical tests show the properties of the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号