首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following our recent studies of the influence of mechanical twinning on the strain hardening of low SFE FCC metals deformed by simple compression, the investigation was extended to two different deformation modes. These were plane strain compression and simple shear carried out on 70/30 brass, which exhibits only strain hardening, and on MP35N, a Co–Ni based alloy that also shows secondary hardening by deformation promoted precipitation. It was found that the magnitude of the primary strain hardening in both alloys, and the secondary hardening in MP35N, was dramatically reduced under simple shear compared to the other deformation paths. This reduced hardening in simple shear appears to be a consequence of the bulk of the deformation twins, and also the secondary hardening precipitates, forming on planes that were parallel to the primary {111} slip planes in this deformation path. These hypotheses are supported by deformation path change tests in which the shear samples that show low flow stress under continued shear, when subjected to simple compression showed a significant increase (jump) in the flow stress, reaching values that are similar to those of the alloy continuously compressed to the same equivalent strain. That is, the reduced strain hardening in shear deformation is due not to reduced twinning, but to the twins produced by shear providing only limited barriers to continued strain by simple shear. Shear banding was found to be more marked in plane strain compression than in simple compression after cold working, and particularly after the additional secondary hardening in MP35N.  相似文献   

2.
In this study, the artificial aging behaviour of 6022-T4 alloy is investigated over a wide temperature range. Hardness readings, TEM and XRD analyses were performed. It was shown that 6022-T4 alloy can be substantially hardened through a short aging treatment at temperatures in excess of 200 °C. The strain hardening curves of the 6022 alloy in different aging conditions were measured using the simple shear test and analysed in terms of their respective microstructures. The under-aged and pre-peak-aged exhibited a good combination of strength and strain hardening while the peak-aged alloy was characterised by maximum strength, albeit with a drastic reduction in strain hardening ability. Strain reversal experiments in simple shear were carried out in order to characterize the Bauschinger effect for the different heat treatment conditions. It was shown that the T4 and under-aged conditions lead to permanent softening of the flow stress.  相似文献   

3.
Finite element (FE) simulations of the simple shear test were conducted for 1050-O and 6022-T4 aluminum alloy sheet samples. Simulations were conducted with two different constitutive equations to account for plastic anisotropy: Either a recently proposed anisotropic yield function combined with an isotropic strain hardening law or a crystal plasticity model. The FE computed shear stress–shear strain curves were compared to the experimental curves measured for the two materials in previous works. Both phenomenological and polycrystal approaches led to results consistent with the experiments. These comparisons lead to a discussion concerning the assessment of anisotropic hardening in the simple shear test.  相似文献   

4.
5.
In this paper a constitutive model for rigid-plastic hardening materials based on the Hencky logarithmic strain tensor and its corotational rates is introduced. The distortional hardening is incorporated in the model using a distortional yield function. The flow rule of this model relates the corotational rate of the logarithmic strain to the difference of the Cauchy stress and the back stress tensors employing deformation-induced anisotropy tensor. Based on the Armstrong–Fredrick evolution equation the kinematic hardening constitutive equation of the proposed model expresses the corotational rate of the back stress tensor in terms of the same corotational rate of the logarithmic strain. Using logarithmic, Green–Naghdi and Jaumann corotational rates in the proposed constitutive model, the Cauchy and back stress tensors as well as subsequent yield surfaces are determined for rigid-plastic kinematic, isotropic and distortional hardening materials in the simple shear deformation. The ability of the model to properly represent the sign and magnitude of the normal stress in the simple shear deformation as well as the flattening of yield surface at the loading point and its orientation towards the loading direction are investigated. It is shown that among the different cases of using corotational rates and plastic deformation parameters in the constitutive equations, the results of the model based on the logarithmic rate and accumulated logarithmic strain are in good agreement with anticipated response of the simple shear deformation.  相似文献   

6.
7.
Viscous and elastic properties of a linear polypropylene (PP) and a long-chain branched low-density polyethylene (LDPE) have been investigated by creep and creep–recovery experiments in shear and elongation. The data obtained verify the ratios between the linear values of the viscosities and the steady-state elastic compliances in shear and elongation predicted by the theory of linear viscoelasticity. In the nonlinear range, no simple correlation between the viscous behaviour in shear and elongation exists. The elongational viscosity of the PP decreases with increasing stress analogously to the shear thinning observed; the linear range extends to higher stresses in elongation than in shear, however. The LDPE shows thinning in shear and strain hardening in elongational flow. For the LDPE, a linear steady-state elastic tensile compliance corresponding to one third of the linear steady-state elastic compliance in shear was determined. For the PP, this theoretically predicted value is approximately reached. Analogous to the viscous behaviour, the linear range extends to higher stresses in elongation than in shear. For both materials, the steady-state elastic compliances in the nonlinear range decrease with increasing stress in shear as well as in elongation. However, the decrease in elongation is more pronounced.  相似文献   

8.
The initiation and growth of adiabatic shear bands   总被引:1,自引:0,他引:1  
A simple version of thermo/viscoplasticity theory is used to model the formation of adiabatic shear bands in high rate deformation of solids. The one dimensional shearing deformation of a finite slab is considered. For the constitutive assumptions made in this paper, homogeneous shearing produces a stress/strain response curve that always has a maximum when strain and rate hardening, plastic heating, and thermal softening are taken into account. Shear bands form if a perturbation is added to the homogeneous fields just before peak stress is obtained with these new fields being used as initial conditions. The resulting initial/boundary value problem is solved by the finite element method for one set of material parameters. The shear band grows slowly at first, then accelerates sharply, until finally the plastic strain rate in the center reaches a maximum, followed by a slow decline. Stress drops rapidly throughout the slab, and the central temperature increases rapidly as the peak in strain rate develops.  相似文献   

9.
One-dimensional shear wave propagation in a half-space of a nonlinear material is considered. The surface of the half-space is subjected to a time dependent but spatially uniform tangential velocity. The half-space material exhibits strain hardening, thermal softening and strain rate sensitivity of the flow stress. For this system, a well-defined band of intense shear deformation can develop adjacent to the loaded surface, even though the material has no imperfections or other natural length scale. Representative particle velocity and strain profiles, which have been obtained numerically, are described for several different models.  相似文献   

10.
In this paper, a driving stress finite element method of elastic-plastic large deformation based on implicit time integrating algorithm and an eight-chain molecular network model is used for the numerical simulation of the simple shear test of polycarbonate (PC) materials. The simulated results are compared with experimental ones. The strain localization propagation for the shear band deformation for simple shear deformation is investigated numerically. The effects of microstructure parameters in the model on strain softening and orientation hardening of the PC are discussed in detail. Supported by the National Natural Science Foundation of China.  相似文献   

11.
Thin-walled tubular specimens were employed to study the cyclic deformation of extruded AZ61A magnesium alloy. Experiments were conducted under fully reversed strain-controlled tension-compression, torsion, and combined axial-torsion in ambient air. Mechanical twinning was found to significantly influence the inelastic deformation of the material. Cyclic hardening was observed at all the strain amplitudes under investigation. For tension-compression at strain amplitudes higher than 0.5%, the stress-strain hysteresis loop was asymmetric with a positive mean stress. This was associated with mechanical twinning in the compression phase and detwinning in the subsequent tension phase. Under cyclic torsion, the stress-strain hysteresis loops were symmetric although mechanical twinning was observed at high shear strain amplitudes. When the material was subjected to combined axial-torsion loading, the alternative occurrence of twinning and detwinning processes under axial stress resulted in asymmetric shear stress-shear strain hysteresis loops. Nonproportional hardening was not observed due to limited number of slip systems and the formation of mechanical twins. Microstructures after the stabilization of cyclic deformation were observed and the dominant mechanisms governing cyclic deformation were discussed. Existing cyclic plasticity models were discussed in light of their capabilities for modeling the observed cyclic deformation of the magnesium alloy.  相似文献   

12.
The monotonic and cyclic mechanical behavior of O-temper AZ31B Mg sheet was measured in large-strain tension/compression and simple shear. Metallography, acoustic emission (AE), and texture measurements revealed twinning during in-plane compression and untwinning upon subsequent tension, producing asymmetric yield and hardening evolution. A working model of deformation mechanisms consistent with the results and with the literature was constructed on the basis of predominantly basal slip for initial tension, twinning for initial compression, and untwinning for tension following compression. The activation stress for twinning is larger than that for untwinning, presumably because of the need for nucleation. Increased accumulated hardening increases the twin nucleation stress, but has little effect on the untwinning stress. Multiple-cycle deformation tends to saturate, with larger strain cycles saturating more slowly. A novel analysis based on saturated cycling was used to estimate the relative magnitude of hardening effects related to twinning. For a 4% strain range, the obstacle strength of twins to slip is 3 MPa, approximately 1/3 the magnitude of textural hardening caused by twin formation (10 MPa). The difference in activation stress of twinning versus untwinning (11 MPa) is of the same magnitude as textural hardening.  相似文献   

13.
In this paper a finite deformation constitutive model for rigid plastic hardening materials based on the logarithmic strain tensor is introduced. The flow rule of this constitutive model relates the corotational rate of the logarithmic strain tensor to the difference of the deviatoric Cauchy stress and the back stress tensors. The evolution equation for the kinematic hardening of this model relates the corotational rate of the back stress tensor to the corotational rate of the logarithmic strain tensor. Using Jaumann, Green–Naghdi, Eulerian and logarithmic corotational rates in the proposed constitutive model, stress–strain responses and subsequent yield surfaces are determined for rigid plastic kinematic and isotropic hardening materials in the simple shear problem at finite deformations.  相似文献   

14.
For a rigid/perfectly plastic material with linear thermal softening and power law rate hardening there is a competition between heat conduction and inertia in determining the time of shear band formation. In a finite specimen the nominal strain rate that produces the fastest growth of perturbations corresponds to the minimum critical strain. Similarly for a fixed strain rate in an infinite specimen, there is a finite wavelength with the maximum growth rate. It is argued that this wavelength should correspond to the most probable minimum spacing for shear bands.  相似文献   

15.
We study thermomechanical deformations of a viscoplastic body deformed in simple shear. The effect of material elasticity is neglected but that of work hardening, strain-rate hardening, thermal softening, and strain-rate gradients is considered. The consideration of strain-rate gradients introduces a material characteristic length into the problem. A homogeneous solution of the governing equations is perturbed at different values t0 of time t, and the growth rate at time t0 of perturbations of different wavelengths is computed. Following Wright and Ockendon's postulate that the wavelength of the dominant instability mode with the maximum growth rate at time t0 determines the minimum spacing between shear bands, the shear band spacing is computed. It is found that for the shear band spacing to be positive, either the thermal conductivity or the material characteristic length must be positive. Approximate analytical expressions for locally adiabatic deformations of dipolar (strain-rate gradient-dependent) materials indicate that the shear band spacing is proportional to the square-root of the material charateristic length, and the fourth root of the strain-rate hardening exponent. The shear band spacing increases with an increase in the strain hardening exponent and the thermal conductivity of the material.  相似文献   

16.
Strain gradient effects on cyclic plasticity   总被引:1,自引:0,他引:1  
Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between rigid platens have been carried out, using the finite element method. It is shown for elastic-perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening in the presence of conventional material hardening. Furthermore, it is shown that dissipative gradient effects can lead to both an increase and a decrease in the dissipation per load cycle depending on the magnitude of the dissipative length parameter, whereas energetic gradient effects lead to decreasing dissipation for increasing energetic length parameter. For dissipative gradient effects it is found that dissipation has a maximum value for some none zero value of the material length parameter, which depends on the magnitude of the deformation cycles.  相似文献   

17.
This work deals with the characterization of the kinematic work-hardening of a bake-hardening steel. A shear test device has been designed and its use for the characterization of the work-hardening of sheet metals is described. Two main results are presented. Firstly, a local strain measurement, based on the following of three dots drawn on the gauge area, gives the evolution of the strain tensor eigenvalues during the test. It is shown, by comparing the theoretical kinematics of simple shear with a slightly perturbated one, that the strain state is close to the ideal one in the center of the gauge area. Secondly, reversal of the shear direction is performed after several prestrain and the evolution of the kinematic work-hardening with the equivalent plastic strain has been identified using an anisotropic elasto-viscoplastic model of Hill 1948 type. Isotropic and kinematic contributions of the work-hardening are also calculated from loading–unloading tensile tests and are compared to those obtained from the simple shear tests. The results show a discrepancy between both identification for the isotropic and the kinematic hardening. However, they are in agreement concerning the evolution of the global work-hardening.  相似文献   

18.
In this paper, a constitutive model with a temperature and strain rate dependent flow stress (Bergstrom hardening rule) and modified Armstrong-Frederick kinematic evolution equation for elastoplastic hardening materials is introduced. Based on the multiplicative decomposition of the deformation gradient,new kinematic relations for the elastic and plastic left stretch tensors as well as the plastic deformation-dependent spin tensor are proposed. Also, a closed-form solution has been obtained for the elastic and plastic left stretch tensors for the simple shear problem.To evaluate model validity, results are compared with known experimental data for SUS 304 stainless steel, which shows a good agreement with the results of the proposed theoretical model.Finally, the stress-deformation curve, as predicted by the model, is plotted for the simple shear problem at room and elevated temperatures using the same material properties for AA5754-O aluminium alloy.  相似文献   

19.
In this study, three EVAs (ethylene-vinyl acetate co-polymers) with different vinyl contents (VA) ranging from 9 wt% to 28 wt% (EVA9, EVA18 and EVA28) were melt blended with organo-clay to obtain polymer layered silicate nanocomposites. Filler intercalation and exfoliation were evidenced by X-ray diffraction. The melt state viscoelastic properties of EVA nanocomposites were studied to examine the influence of clay in altering the flow properties of these polymeric nanocomposites. The EVA18 and EVA28 nanocomposites exhibited remarkable difference in dynamic and steady shear properties compared to neat polymers. On the other hand, EVA9-5% nanocomposite did not exfoliate and exhibited rheological behaviour very similar to that of the neat polymer. Furthermore, the first normal stress difference was found to be dependent on the silicate loadings when measured at low shear stresses. The uniaxial extensional viscosity measurement indicated that the strain hardening was weaker in EVA nanocomposites compared to neat polymers. Environmental scanning electron (ESE)-microscopy elucidated a possible reason for reduced strain hardening in these systems.  相似文献   

20.
Based on the definitions of hardening, softening and ideal plastic behavior of elastic-plastic materials in the true stress tensor space, the phenomena of simple shear oscillation are shown to be relative to the oscillatory occurrence of hardening and softening behavior of elastic-plastic materials, namely the oscillation of hardening behavior, by analyzing a simple model of rigid-plastic materials with kinematical hardening under simple shear deformation. To make the models of elastic-plastic materials realistic, must be satisfied the following conditions: for any constitutive model, its response stresses to any continuous plastic deformation must be non-oscillatory, and there is no oscillation of hardening behavior during the plastic deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号