首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
粗糙表面的弹塑性接触研究   总被引:1,自引:1,他引:0  
建立了综合载荷作用下粗糙表面弹塑性接触的确定性模型,考虑了微凸峰接触的弹塑性变形阶段,数值求解得到实际接触面积、压力分布和微凸峰塑性形变.分析了实际接触面积与法向载荷的关系,并研究了点接触的椭圆参数对上述关系的影响.建立了结点增长模型,分析了结点增长与滑动摩擦系数的关系以及滑动摩擦系数随椭圆参数的变化.结果表明:随着法向载荷增大,实际接触面积与法向载荷之间的非线性关系愈加显著;椭圆参数越大,实际接触面积越小,选择较小的椭圆参数可降低平均接触压力;结点增长的速率随滑动摩擦系数增大而增大;表面剪切作用力使最大Mises应力值升高,疲劳裂纹的发生源向表面靠近;重载时选择较小的滚动轴承沟曲率半径系数有利于减小摩擦功耗.  相似文献   

2.
粗糙面在梯度表面层上滑动接触的应力分布   总被引:1,自引:0,他引:1  
对粗糙面在梯度表面层上的滑动过程进行应力分布研究,以模拟实际摩擦过程中,考虑塑性变形情况下,梯度覆层体中的应力分布规律,同时与均质体及单覆层体进行比较研究,分析了在表面载荷相同时滑动接触的应力分布。结果表明覆层体出现塑性变形后,在接触表面上的压力分布与弹性变形时有很大变化,在界面处梯度层的应力分布比单层膜更为理想,其应变梯度也较小;受相同表面载荷作用下产生塑性变形时,梯度层膜在基体产生塑性变形较小  相似文献   

3.
A contact stress analysis is presented for a layered elastic half-space in contact with a rough surface exhibiting self-affine (fractal) behavior. Relationships for the mean contact pressure versus representative strain and the real half-contact width versus elastic properties of the layer and the substrate, asperity radius, layer thickness, and truncated half-contact width were derived from finite element simulations of a layered medium compressed elastically by a rigid cylindrical asperity. These relationships were incorporated in a numerical algorithm that was used to obtain the contact pressure distributions and stresses generated by the asperity contacts formed at the interface of the layered medium and the fractal surface. Analytical solutions illustrate the significance of the elastic material properties, layer thickness, and surface topography (roughness) on global parameters such as normal load and real contact area. Results for the contact pressure distribution and the surface and subsurface stresses provide insight into the initiation of yielding and the tendency for cracking in the layered medium. It is shown that cracking at the surface and the layer/substrate interface is more likely to occur in the case of a stiff layer, whereas surface cracking is more prominent for a relatively compliant layer.  相似文献   

4.
From a microscopic point of view, the real contact area between two rough surfaces is the sum of the areas of contact between facing asperities. Since the real contact area is a fraction of the nominal contact area, the real contact pressure is much higher than the nominal contact pressure, which results in plastic deformation of asperities. As plasticity is size dependent at size scales below tens of micrometers, with the general trend of smaller being harder, macroscopic plasticity is not suitable to describe plastic deformation of small asperities and thus fails to capture the real contact area and pressure accurately. Here we adopt conventional mechanism-based strain gradient plasticity (CMSGP) to analyze the contact between a rigid platen and an elasto-plastic solid with a rough surface. Flattening of a single sinusoidal asperity is analyzed first to highlight the difference between CMSGP and J2 isotropic plasticity. For the rough surface contact, besides CMSGP, pure elastic and J2 isotropic plasticity analysis is also carried out for comparison. In all cases, the contact area A rises linearly with the applied load, but with a different slope which implies that the mean contact pressures are different. CMSGP produces qualitative changes in the distributions of local contact pressures compared with pure elastic and J2 isotropic plasticity analysis, furthermore, bounded by the two.  相似文献   

5.
A criterion of ductile fracture is proposed, which takes into account the singular character of theoretical solutions near the maximum friction surfaces and the emergence of a thin layer with intense plastic strains near surfaces with high friction stresses in real processes of metal forming. The equation for the thickness of the layer with intense plastic strains and the fracture criterion include the strain rate intensity factor, apparently, characterizing the intensity of physical processes that occur in a thin material layer near the friction surfaces. Some experimental data are used to determine the thickness of this layer. The ductile fracture criterion is analyzed by solving the problem of strip extrusion under conditions of plane strain deformation.  相似文献   

6.
在改变粘着试验中接触副预压紧力、接触副分离速度以及环境相对湿度的条件下,利用表面力仪实时测量了新鲜解理云母接触副分离过程的分离力,并观察了接触后解理云母接触区的状态.结果表明:在保持弹性接触时,预压紧力对分离力影响不大,接触材料的表面能决定分离力的强度;当预压紧力超过临界值时,接触表面发生塑性变形,在一定范围内分离力随预压紧力的增加而增大;在干接触时分离速度与分离力无直接联系,但在存在大粘度中间层液体时,分离速度的增加可使分离力显著增大;分离力随相对湿度的增加而增大.  相似文献   

7.
Biaxial strain and pure shear of a thin film are analysed using a strain gradient plasticity theory presented by Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52, 1379–1406]. Constitutive equations are formulated based on the assumption that the free energy only depends on the elastic strain and that the dissipation is influenced by the plastic strain gradients. The three material length scale parameters controlling the gradient effects in a general case are here represented by a single one. Boundary conditions for plastic strains are formulated in terms of a surface energy that represents dislocation buildup at an elastic/plastic interface. This implies constrained plastic flow at the interface and it enables the simulation of interfaces with different constitutive properties. The surface energy is also controlled by a single length scale parameter, which together with the material length scale defines a particular material.Numerical results reveal that a boundary layer is developed in the film for both biaxial and shear loading, giving rise to size effects. The size effects are strongly connected to the buildup of surface energy at the interface. If the interface length scale is small, the size effect vanishes. For a stiffer interface, corresponding to a non-vanishing surface energy at the interface, the yield strength is found to scale with the inverse of film thickness.Numerical predictions by the theory are compared to different experimental data and to dislocation dynamics simulations. Estimates of material length scale parameters are presented.  相似文献   

8.
用声显微镜技术测量真实接触面积的研究   总被引:1,自引:0,他引:1  
为了研究表面接触对润滑状态的影响,利用THSAM-5超声显微镜配以专门设计的辅助试验装置,测得了铝片-钢球的真实接触面积分别随载荷和加载时间变化的声学像,以及润滑剂的存在对测量结果的影响,发现真实接触面积是随着加载时间的延长而增大,而且载荷越大,真实接触面积越大,这是接触点发生塑性变形的结果。研究表明,声显微镜技术是测量真实接触面积的一种可行方法,但要将其作为一种定量测量手段却还有待于进一步的研究  相似文献   

9.
为更加准确地描述机械磨削表面的接触刚度,本文在现有统计分析理论的基础上,提出了一种新的粗糙表面接触模型。模型针对接触表面微凸体形貌,将原有的球体假设采用cos函数曲线回转体代替,在假设形貌的基础上重新解算了微凸体弹塑性变形的临界压入深度,推导出了接触区域真实接触压力与接触刚度关系表达式。通过数值仿真方法得到了不同塑性指数下平均距离、接触刚度与接触压力之间的变化关系。对比结果显示,随着塑性指数的增大,本文模型的平均距离与球形模型的平均距离之间的差值逐渐增大。在接触刚度方面,本文模型相比球形模型更加贴近实验结果,并且随着塑性指数的增加,球形模型与本文模型之间的差值越来越大。本文模型结果与实验数据的相对偏差能够控制在5%以内,从而验证了本文模型的正确性,为更加准确地描述磨削表面零件的接触行为提供理论基础。  相似文献   

10.
In the framework of strain gradient plasticity, a solid body with boundary surface playing the role of a dissipative boundary layer endowed with surface tension and surface energy, is addressed. Using the so-called residual-based gradient plasticity theory, the state equations and the higher order boundary conditions are derived quite naturally for both the bulk material and the boundary layer. A phenomenological constitutive model is envisioned, in which the bulk material and the boundary layer obey (rate independent associative) coupled plasticity evolution laws, with kinematic hardening laws of differential nature for the bulk material, but of nondifferential nature for the layer. A combined global maximum dissipation principle is shown to hold. The higher order boundary conditions are discussed in details and categorized in relation to some peculiar features of the boundary surface, and their basic role in the coupling of the bulk/layer plasticity evolution laws is pointed out. The case of an internal interface is also studied. An illustrative example relating to a shear model exhibiting energetic size effects is presented. The theory provides a unified view on gradient plasticity with interfacial energy effects.  相似文献   

11.
This is a study of plastic strain localization, surface roughening and of the origin of these phenomena in polycrystals. An oligocrystal aluminum sample with a single quasi-2D layer of coarse grains is plastically deformed under uniaxial tensile loading. During deformation, the history of strain localization, surface roughening, microstructure and in-grain fragmentation is carefully recorded. Using a crystal plasticity finite element model, corresponding high-resolution simulations are conducted. A series of comparisons identifying aspects of good and of less good match between model predictions and experiments is presented. The study suggests that the grain topology and microtexture have a significant influence on the origin of strain heterogeneity. Moreover, it suggests that the final surface roughening profiles are related both to the macro strain localization and to the intra-grain interaction. Finally slip lines observed on the surface of the samples are used to probe the activation of slip systems in detail. The study concludes with an assessment of the limitations of the crystal plasticity model.  相似文献   

12.
The indentation of single crystals by a periodic array of flat rigid contacts is analyzed using discrete dislocation plasticity. Plane strain analyses are carried out with the dislocations all of edge character and modeled as line singularities in a linear elastic solid. The limiting cases of frictionless and perfectly sticking contacts are considered. The effects of contact size, dislocation source density, and dislocation obstacle density and strength on the evolution of the mean indentation pressure are explored, but the main focus is on contrasting the response of crystals having dislocation sources on the surface with that of crystals having dislocation sources in the bulk. When there are only bulk sources, the mean contact pressure for sufficiently large contacts is independent of the friction condition, whereas for sufficiently small contact sizes, there is a significant dependence on the friction condition. When there are only surface dislocation sources the mean contact pressure increases much more rapidly with indentation depth than when bulk sources are present and the mean contact pressure is very sensitive to the strength of the obstacles to dislocation glide. Also, on unloading a layer of tensile residual stress develops when surface dislocation sources dominate.  相似文献   

13.
The surface integrity of inconel-718 nickel-base superalloy was investigated using orthogonal cutting at various cutting speeds, depths of cut and chip-tool contact lengths under unlubricated conditions. The experimental work involved the determination of residual stress, plastic strain and microhardness distribution in the surface region and the examination of the surface and subsurface using scanning electron and optical microscope. The results are interpreted in terms of the variation in shear-plane length and consequently the variation in tool forces with the cutting conditions. The results are compared with similar results obtained under lubricated conditions. It is found that the lubricant is effective at low cutting speeds in reducing the tool forces that led to lower hardness and plastic strain in the surface region. In general, the severity of surface damage in terms of intensity and total area affected was decreased with the application of a lubricant. Both residual stresses and plastic strains decreased and the quality of the machined surface improved with an increase in cutting speed, a decrease in depth of cut and with tools having controlled chip-tool contact lengths.  相似文献   

14.
建立了点接触混合润滑模型,根据下表面应力分布迭代求解出下表层的塑性应变,将下表面塑性应变等效转化为本征应变,结合半无限体内本征应变对弹性场的应力扰动解法求解残余应力,表面塑性变形根据本征应变采用半解析方法求解.计算结果表明:本混合润滑模型在塑性计算模块、弹塑性流体动力润滑计算均表现出了很好的准确性以及高效性;本模型能够模拟真实机加工粗糙表面下弹塑性混合润滑问题;能够模拟由全膜润滑、混合润滑、边界润滑以及干接触全工况下的润滑情况,当滚动速度逐渐减小时,平均油膜厚度逐渐减小,接触区由全膜润滑转变为混合润滑,最终演变干接触.  相似文献   

15.
规则凹坑表面形貌润滑研究   总被引:15,自引:9,他引:15  
给出了一个研究规则凹坑对表面摩擦性能影响的三销环试验方案,考察了面接触下不同尺寸的规则凹坑对表面润滑性能的影响。结果表明,当规则凹坑表面尺寸适当时,其润滑效果比无规则凹坑表面有较大提高。实验分析表明,规则凹坑对表面摩擦学性能影响的主要因素为规则凹坑润滑所造成的真实接触面积与塑性接触面积的变化,因此在选择凹坑尺寸时,应使表面真实接触面积,尤其是粗糙峰塑性变形程度降低,此外,规则凹坑尺寸除了顶面积大小外,凹坑深度的优化非常重要。  相似文献   

16.
A semianalytic solution of the problem on the compression of an annular layer of a plastic material obeying the double shear model on a cylindrical mandrel is obtained. The approximate statement of boundary conditions, which cannot be satisfied exactly in the framework of the constructed solution, is based on the same assumptions as the statement of the classical plasticity problem of compression of a material layer between rough plates (Prandtl’s problem). It is assumed that the maximum friction law is satisfied on the inner surface of the layer. The solution is singular near this surface. The strain rate intensity factor is calculated, and its dependence on the process and material parameters is shown.  相似文献   

17.
刘龙飞  刘炼煌  胡力  杨智程 《力学学报》2022,54(4):1051-1062
在外爆加载金属柱壳高速坍塌过程中, 发生塑性变形失稳形成的剪切带具有高度的自组织特征, 甚至出现剪切带排列的单旋现象—剪切带在顺时针和逆时针两个方向呈现一个方向占优的现象. 柱壳在坍塌时, 最大剪切应力位于柱壳内表面, 剪切带的形核及扩展行为受内表面材料介观状态的影响显著. 本文通过选材和控制柱壳加工工艺, 获得了内表面具有不同厚度塑性层的20钢柱壳, 采用厚壁圆筒实验技术, 研究了表面加工塑性层对金属柱壳绝热剪切带自组织单旋现象起始的影响规律及其物理机制. 研究结果表明, 金属柱壳内表面加工塑性层显著改变了试样剪切带的起始条件, 沿顺时针或逆时针方向排列的剪切带形核数量在总剪切带数量中所占比例取决于表面加工塑性层的厚度和晶粒取向, 具有单一晶粒拉伸方向的较厚塑性层样品更容易形成单向螺旋剪切带结构. 在相同变形条件下, 随着塑性层厚度增加, 剪切带平均形核速率和扩展速率增大, 剪切带平均间距减小. 结果可为理解金属柱壳在高速塌陷过程中绝热剪切带占优取向现象提供有价值的参考.   相似文献   

18.
The concept of strain rate intensity factor was introduced in [1], where the asymptotic expansion of the velocity field in a perfectly rigid-plastic material was obtained near the maximum friction surface, which is determined by the condition that the specific friction forces on this surface are equal to the simple shear yield strength. In particular, it was shown in this paper that near the maximum friction surface the equivalent strain rate (the second invariant of the strain rate tensor) tends to infinity inversely proportional to the square root of the distance to this surface. We note that the same result was obtained in the case of plane flow in [2]. The strain rate intensity factor is defined to be the coefficient of the leading singular number in the series expansion of the equivalent strain rate near the maximum friction surface. It was shown in [3] that there is a sufficiently complete formal analogy between the strain rate intensity factor and the stress intensity factor in mechanics of cracks [4]. In [5], it was suggested to use the concept of strain rate intensity factor to estimate the thickness of the layer near the friction surface where one should take into account viscosity effects. (Thus, this is an intensive strain layer formed as a result of a very large equivalent strain rate.) Therefore, the problem of calculating the strain rate intensity factor in specific processes is topical in the development of the general concept based on the use of the strain rate intensity factor and its applications in the theory of metal forming processes. These factors have already been calculated for several processes such as plane upsetting and drawing [3]. In the present paper, we calculate the distribution of the strain rate intensity factor in a plastic mass flow through an infinite converging channel formed by two conical surfaces on which the law of maximum friction acts (Fig. 1). A specific characteristic of this problem is the existence of two maximum friction surfaces and, accordingly, two distributions of the strain rate intensity factor. Since, according to the theory [5], the strain rate intensity factor is related to the thickness of the intensive strain layer near the friction surface, the solution of this problem may serve as a starting point for experimental confirmations of the theory. Note that the intensive strain layer thickness can be determined experimentally without any difficulties [6, 7] and the flow in an infinite channel of the shape under study can successfully model the tube drawing process [8].  相似文献   

19.
Strain-gradient plasticity theories are reviewed in which some measure of the plastic strain rate is treated as an independent kinematic variable. Dislocation arguments are invoked in order to provide a physical basis for the hardening at interfaces. A phenomenological, flow theory version of gradient plasticity is constructed in which stress measures, work-conjugate to plastic strain and its gradient, satisfy a yield condition. Plastic work is also done at internal interfaces and a yield surface is postulated for the work-conjugate stress quantities at the interface. Thereby, the theory has the potential to account for grain size effects in polycrystals. Both the bulk and interfacial stresses are taken to be dissipative in nature and due attention is paid to ensure that positive plastic work is done. It is shown that the mathematical structure of the elasto-plastic strain-gradient theory has similarities to conventional rigid-plasticity theory. Uniqueness and extremum principles are constructed for the solution of boundary value problems.  相似文献   

20.
Unloading an elastic-plastic contact of rough surfaces   总被引:1,自引:0,他引:1  
A statistical model for the unloading of elastic-plastic contact of rough surfaces is presented for a single load-unload cycle. The hystereses of load-separation and load real contact area behavior are analyzed for a wide range of surface roughness and loading conditions. The residual topography of the unloaded rough surfaces is also analyzed and the new distribution functions of asperity heights and summit radii of curvature along with a corresponding GW residual plasticity index are presented. A new modified plasticity index (MPI) is suggested which considers the energy dissipation due to unrecovered plastic deformations. This MPI varies from zero for purely elastic contacts to unity for purely plastic contacts and hence, can better define the level of plasticity of contacting rough surfaces compared to the original GW plasticity index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号