首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In the present work, a special solid phase epitaxy method has been adapted for the preparation of CoSi2 film. This method includes an epitaxial growth of Co films on Si (1 0 0) substrate, and in situ annealing of the Co/Si films in vacuum. It has been found that at the substrate temperature of 360°C, fcc cobalt film grows epitaxially on the Si (1 0 0) surface. The crystallographic orientation relations between fcc Co film and Si substrate determined from the electron diffraction result are: (0 0 1) Co//(0 0 1) Si, [1 0 0] Co//[1 1 0]Si. Upon annealing at temperatures range from 500 to 600°C, Co film reacts with Si substrate and transforms into CoSi2. The CoSi2 films prepared by this way are characterized by XTEM, XPS and AFM.  相似文献   

2.
《Applied Surface Science》2005,239(3-4):464-469
X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and work-function measurements have been used to investigate the Y/SiO2/Si(1 0 0) interfaces in situ as a function of annealing temperature. The results show that yttrium is very reactive with SiO2 and can react with SiO2 to form Y silicate and Y2O3 even at room temperature. Annealing leads to the continual growth of the Y silicate. Two distinctive reaction mechanisms are suggested for the annealing processes below and above 600 K. The reaction between metallic yttrium and SiO2 dominates the annealing processes below 600 K, while at annealing temperatures above 600 K, a reaction between the new-formed Y2O3 and SiO2 becomes dominant. No Y silicide is formed during Y deposition and subsequent annealing processes. UPS valence-band spectra indicate the silicate layer is formed at the top surface. After 1050 K annealing, a Y-silicate/SiO2/Si structure free of Y2O3 is finally formed.  相似文献   

3.
The reported work has been focused on the improvement of electrical parameters of Schottky diode using vacuum annealing at mild temperature in Ar gas ambient. Nickel Schottky barrier diodes were fabricated on 50 μm epitaxial layer of n-type 4H-SiC (0 0 0 1) substrate. The values of leakage current, Schottky barrier height (?B), ideality factor (η) and density of interface states (NSS) were obtained from experimentally measured current–voltage (IV) and capacitance–voltage (CV) characteristics before and after vacuum annealing treatment. The data revealed that ?B, η and reverse leakage current for the as-processed diodes are 1.25 eV, 1.6 and 1.2 nA (at ?100 V), respectively, while for vacuum annealed diodes these parameters are 1.36 eV, 1.3 and 900 pA (at same reverse voltage). Improved characteristics have been resulted under the influence of vacuum annealing because of lesser number of minority carrier generation due to incessant reduction of number of available discrete energy levels in the bandgap of 4H-SiC substrate and lesser number of interface states density at Ni/4H-SiC (0 0 0 1) interface.  相似文献   

4.
Few-layer graphene (FLG) was grown on Al2O3 (0 0 0 1) substrates at different temperatures via direct carbon atoms deposition by using solid source molecular beam epitaxy (SSMBE) method. The structural properties were characterized by reflection high energy electron diffraction (RHEED), Raman spectroscopy and near-edge X-ray absorption fine-structure (NEXAFS). The results showed that the FLG started to form at the substrate temperature of 700 °C. When the substrate temperature increased to 1300 °C, the quality of the FLG was the best and the layer number was estimated to be less than 5. At higher substrate temperature (1400 °C or above), the crystalline quality of the FLG would be deteriorated. Our experiment results demonstrated that the substrate temperature played an important role on the FLG layer formation on Al2O3 (0 0 0 1) substrates and the related growth mechanism was briefly discussed.  相似文献   

5.
《Applied Surface Science》2005,239(3-4):451-457
Well-ordered ultra-thin Al2O3 films were grown on NiAl (1 1 0) surface by exposing the sample at various oxygen absorption temperatures ranging from 570 to 1100 K at dose rates 6.6 × 10−5 and 6.6 × 10−6 Pa. From the results of low-energy electron diffraction (LEED), Auger electron spectrometer (AES) and X-ray photon spectroscopy (XPS) observations, it was revealed that oxidation mechanism above 770 K is different from well-known two-step process. At high temperature, oxidation and crystallization occurred simultaneously while in two-step process oxidation and crystallization occurred one after another. At high-temperature oxidation well-ordered crystalline oxide can be formed by a single-step without annealing. Well-ordered Al2O3 layer with thickness over 1 nm was obtained in oxygen absorption temperature 1070 K and a dose rate 6.6 × 10−6 Pa at 1200 L oxygen.  相似文献   

6.
Atomic force microscopy (AFM) has been used to characterize the growth of Au deposited via evaporation onto the positive face of single crystalline, lithium niobate, LiNbO3(0 0 0 1) surface. In order to study the mechanisms for the ordering and aggregation of a noble metal on this ferroelectric surface, topographic and phase contrast imaging of the fractional surface coverage of Au were performed. Atomically flat, uniformly poled LiNbO3 surfaces were prepared via an ambient high temperature anneal and served as a support for the thin gold films. These gold atomic layers were grown using electron bombardment evaporation sources under ultra-high vacuum (UHV) conditions and subsequently characterized under both vacuum and ambient environments. Using AFM it was found that gold preferentially nucleates at the top of LiNbO3 substrate step edges. With increased coverage, island formation proceeds due to local aggregation of adsorbed gold on each substrate terrace. Based on local imaging of the growth morphology, the data is discussed in terms of thin film growth mechanisms as well as the influence of native surface features such as defects and charge distribution. Understanding growth mechanisms for gold layers on ferroelectric surfaces allows for a fuller appreciation of how atomic deposition of metal atoms on patterned poled LiNbO3 surfaces would occur as well as yielding greater insight on the atomic characteristics of metals on ferroelectric interfaces.  相似文献   

7.
S.H. Ma  Z.Y. Jiao  Z.X. Yang 《Surface science》2010,604(9-10):817-823
The adsorption of sulfur on Co(0 0 0 1) was studied using density functional theory calculations at coverage from 0.11 ML to 1.0 ML. Calculated results indicate that atomic S favors in hollow sites with bond S–Co dominated at lower coverage and at higher coverage the strong adsorbate S–S interaction leads to the formation of S2 species. It was shown that the adsorption energy generally increases (gets weaker) with the coverage in a near linear fashion for the most stable configurations. In addition, modification of the surface electronic properties has been discussed and some discrepancy are found between our calculations and the findings of O adsorption on Au(1 1 1) and Pt(1 1 1) surfaces.  相似文献   

8.
E. Demirci  A. Winkler 《Surface science》2010,604(5-6):609-616
Co-adsorption of hydrogen and CO on Cu(1 1 0) and on a bimetallic Ni/Cu(1 1 0) surface was studied by thermal desorption spectroscopy. Hydrogen was exposed in atomic form as generated in a hot tungsten tube. The Ni/Cu surface alloy was prepared by physical vapor deposition of nickel. It turned out that extended exposure of atomic hydrogen leads not only to adsorption at surface and sub-surface sites, but also to a roughening of the Cu(1 1 0) surface, which results in a decrease of the desorption temperature for surface hydrogen. Exposure of a CO saturated Cu(1 1 0) surface to atomic H leads to a removal of the more strongly bonded on-top CO (α1 peak) only, whereas the more weakly adsorbed CO molecules in the pseudo threefold hollow sites (α2 peak) are hardly influenced. No reaction between CO and H could be observed. The modification of the Cu(1 1 0) surface with Ni has a strong influence on CO adsorption, leading to three new, distinct desorption peaks, but has little influence on hydrogen desorption. Co-adsorption of H and CO on the Ni/Cu(1 1 0) bimetallic surface leads to desorption of CO and H2 in the same temperature regime, but again no reaction between the two species is observed.  相似文献   

9.
A.V. Vasev 《Surface science》2008,602(11):1933-1937
Optical properties of MBE-grown GaAs(0 0 1) surfaces have been studied by spectroscopic ellipsometry under dynamic conditions of ramp heating and cooling after desorption of passivating As-cap-layer with low pressure H2 atmosphere (14 Torr) applied to the surface. The temperature dependence of GaAs pseudo-dielectric function with atomically smooth (0 0 1) surface carrying the fixed Ga-rich (4 × 2) reconstruction was obtained for the temperature range of 160–600 °C. It is shown ellipsometrically that GaAs(0 0 1) heating in the molecular hydrogen atmosphere results in the formation of hydrogenated layer on the surface.  相似文献   

10.
In thin layered Fe/Co (0 0 1), grown on MgO (0 0 1), both Fe and Co crystallize in the body-centered cubic (BCC) structure, as seen in a series of superlattices where the layer thickness of the components is varied from two to twelve atomic monolayers. These superlattices have novel magnetic properties as observed by magnetization and polarized neutron reflectivity measurements. There is a significant enhancement of the magnetic moments of both Fe and Co at the interfaces. Furthermore, the easy axis of the system changes from [1 0 0] for films of low cobalt content to [1 1 0] for a Co content exceeding 33%. No indication of a uniaxial anisotropy component is found in any of the samples. The first anisotropy constant (K1) of BCC Co is found to be negative with an estimated magnitude of 110 kJ/m3 at 10 K. In all cases, the magnetic moments of Fe and Co have parallel alignment.  相似文献   

11.
We have used coaxial impact-collision ion scattering spectroscopy (CAICISS) and time-of-flight elastic recoil detection analysis (TOF-ERDA) to investigate the adsorption of atomic hydrogen on the 6H-SiC(0 0 0 1)√3×√3 surface. It has been found that the saturation coverage of hydrogen on the 6H-SiC(0 0 0 1)√3×√3 surface is about 1.7 ML. Upon saturated adsorption of atomic hydrogen, the √3×√3 surface structure changes to the 1×1 structure. The data of the CAICISS measurements have indicated that as a result of the hydrogen adsorption, Si adatoms on the √3×√3 surface move from T4 to on-top sites.  相似文献   

12.
The formation and structure of monolayer PdRu/Ru(0 0 0 1) surface alloys and their adsorption properties with respect to deuterium adsorption were investigated by atomic resolution scanning tunneling microscopy and by temperature programmed desorption. Surface alloys, prepared by deposition of up to one monolayer of Pd and flash annealing to 1150 K show (i) negligible loss of Pd by desorption or diffusion into the Ru bulk during this procedure and (ii) dominant phase separation into 2D Pd and Ru islands, in contrast to the random distribution in PtRu/Ru(0 0 0 1) surface alloys [H.E. Hoster, A. Bergbreiter, P.M. Erne, T. Hager, H. Rauscher, R.J. Behm, Phys. Chem. Chem. Phys. 10 (2008) 3812]. 2D short-range order parameters and the abundance of specific adsorption ensembles were evaluated for different Pd contents, effective pair interaction (EPI) energies were derived from Monte Carlo simulations. Deuterium adsorption on Pd monolayer films shows a pronounced weakening of adsorption bond, which is attributed to compressive strain and metal–metal interactions between Pd and underlying Ru atoms (‘vertical ligand effect’). Mixed adsorption ensembles containing both Pd and Ru atoms give rise to D2 desorption in the intermediate temperature regime. The impact of the specific lateral distribution of the two metal species on the chemical surface properties is illustrated by comparison with deuterium adsorption on dispersed PtRu/Ru(0 0 0 1) surface alloys [T. Diemant, H. Rauscher, R.J. Behm, J. Phys. Chem. C 112 (2008) 8381].  相似文献   

13.
B.A. Hamad 《Surface science》2008,602(24):3654-3659
I performed density functional theory (DFT) calculations combined with MD simulations to study the structural relaxation of Ru(0001) surface. The surface relaxation of the topmost layer is found to be about ?4% at absolute zero temperature. Using MD simulations in the temperatures range of 50 K and 900 K, the effect is found to be minor on the surface relaxation as compared to Pd (1 1 1) clean surface. The effect of surface vibration is also investigated using a LEED code and shows no effect of the vibrational level on the IV curves, which rules out any disagreement between proper theory and LEED results of well prepared surfaces.  相似文献   

14.
The influence of the (2 × 1)O reconstruction on the growth of Ag on a Cu(110) surface was studied by scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES). On the bare Cu(110) surface, Stranski–Krastanov growth of silver is observed at sample temperatures between 277 K and 500 K: The formation of a Ag wetting layer is followed by the growth of three-dimensional Ag wires. In contrast, on the oxygen-precovered Cu(110) surface, the growth of silver depends heavily on the substrate temperature. Upon Ag deposition at room temperature, a homogeneous, polycrystalline Ag layer is observed, whereas at 500 K, three-dimensional wires separated by (2 × 1)O reconstructed areas are formed. The behavior of a deposited Ag layer upon annealing is also influenced greatly by the presence of oxygen. On the bare surface, annealing does not change the Ag wetting layer and gives rise to Ostwald ripening of the Ag wires. On the oxygen-precovered surface, however, the initial polycrystalline Aglayer first transforms into Ag wires at around 500 K. Above this temperature, the depletion of the (2 × 1)O reconstructed areas due to Ag-induced O desorption is balanced by the formation of a Ag wetting layer. On both, the bare and the oxygen-precovered Cu(110) surface, the deposited silver diffuses into the Cu bulk at temperatures above 700 K.  相似文献   

15.
《Solid State Ionics》2006,177(9-10):863-868
Layered Li(Ni0.5Co0.5)1−yFeyO2 cathodes with 0  y  0.2 have been synthesized by firing the coprecipitated hydroxides of the transition metals and lithium hydroxide at 700 °C and characterized as cathode materials for lithium ion batteries to various cutoff charge voltages (up to 4.5 V). While the y = 0.05 sample shows an improvement in capacity, cyclability, and rate capability, those with y = 0.1 and 0.2 exhibit a decline in electrochemical performance compared to the y = 0 sample. Structural characterization of the chemically delithiated Li1−x(Ni0.5Co0.5)1−yFeyO2 samples indicates that the initial O3 structure is maintained down to a lithium content (1  x)  0.3. For (1  x) < 0.3, while a P3 type phase is formed for the y = 0 sample, an O1 type phase is formed for the y = 0.05, 0.1 and 0.2 samples. Monitoring the average oxidation state of the transition metal ions with lithium contents (1  x) reveals that the system is chemically more stable down to a lower lithium content (1  x)  0.3 compared to the Li1−xCoO2 system. The improved structural and chemical stabilities appear to lead to better cyclability to higher cutoff charge voltages compared to that found before with the LiCoO2 system.  相似文献   

16.
Fe3O4 nanoparticles and thin films were prepared on the Au(1 1 1) surface and characterized using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Fe3O4 was formed by annealing α-Fe2O3(0 0 0 1) structures on Au(1 1 1) at 750 K in ultrahigh vacuum (UHV) for 60 min. Transformation of the α-Fe2O3(0 0 0 1) structures into Fe3O4 nanoparticles and thin films was supported by XPS. STM images show that during the growth procedure used, Fe3O4 initially appears as nanoparticles at low coverages, and forms thin films at ~2 monolayer equivalents (MLE) of iron. Two types of ordered superstructures were observed on the Fe3O4 particles with periodicities of ~50 and ~42 Å, respectively. As the Fe3O4 particles form more continuous films, the ~50 Å feature was the predominant superstructure observed. The Fe3O4 structures at all coverages show a hexagonal unit cell with a ~3 Å periodicity in the atomically resolved STM images.  相似文献   

17.
Karl Jacobi  Yuemin Wang 《Surface science》2009,603(10-12):1600-1604
The interaction of NO with the O-rich RuO2(1 1 0) surface, exposing coordinatively unsaturated O-bridge, O-cus, and Ru-cus atoms, was studied at 300 K by thermal desorption spectroscopy (TDS) and high-resolution electron energy-loss spectroscopy (HREELS). The conclusions are validated by isotope substitution experiments with 18O. During exposure to NO an O···N–O surface group (NO2-cus) is formed with O-cus. Additionally, a smaller number of empty Ru-cus sites are filled by NO-cus. If one warms the sample to 400 K, NO2-cus does not desorb but decomposes into O and NO again, the latter being either released into gas phase or adsorbed as NO-cus. With O-bridge such a surface group is not stable at 300 K. Our experiments further prove that O-cus is more reactive than O-bridge.  相似文献   

18.
The adsorption of H2S on Fe(1 0 0) is examined using ab initio molecular dynamics at 298 and 1808 K. Dissociation of H2S occurs at both temperatures simulated, to leave adsorbed S and two H atoms. The dissociation occurs via a two step process and the mechanism is found to be different depending on the temperature of the reaction. At 1808 K, diffusion of the dissociated H atoms into the subsurface region is also observed.  相似文献   

19.
Barium was deposited at room temperature on a thermal silicon oxide layer and the interfacial reaction was monitored by synchrotron induced photoemission (both core level and valence band). The first step of the growth consists of an interfacial reaction which leads to the formation of an interfacial silicate layer. The next step consists in formation of barium oxide while metallic barium occurs subsequently. The deposit can be also homogenized by annealing above 575 K. This results in the formation of several layers of silicate by consumption of silicon oxide. In the case of fractional coverage, subsequent annealing at 975 K induces the decomposition of barium silicate. However, such a decomposition process is strongly dependent on the initial film thickness. It can be avoided for deposits thicker than 3 eqML.  相似文献   

20.
Biaxially textured yttria stabilized zirconia (YSZ) thin films, were deposited on glass substrates by ion beam assisted deposition method with different deposition time. As contrasts, films were also fabricated without assisting ion beam. The orientation properties of the films were characterized by X-ray diffraction. A comparative study shows that there is a competition between (0 0 1) and (0 1 1) alignments during the growth process. Assisting ions make the films (0 0 1)-advantaged and biaxially textured. The competitive growth and the orientation development are explained by selective resputtering and anisotropic damage on growing films induced by assisting ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号