首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this paper is to propose numerical methods to determine the macroscopic bending strength criterion of periodically heterogeneous thin plates in the framework of yield design (or limit analysis) theory. The macroscopic strength criterion of the heterogeneous plate is obtained by solving an auxiliary yield design problem formulated on the unit cell, that is the elementary domain reproducing the plate strength properties by periodicity. In the present work, it is assumed that the plate thickness is small compared to the unit cell characteristic length, so that the unit cell can still be considered as a thin plate itself. Yield design static and kinematic approaches for solving the auxiliary problem are, therefore, formulated with a Love–Kirchhoff plate model. Finite elements consistent with this model are proposed to solve both approaches and it is shown that the corresponding optimization problems belong to the class of second-order cone programming (SOCP), for which very efficient solvers are available. Macroscopic strength criteria are computed for different type of heterogeneous plates (reinforced, perforated plates,…) by comparing the results of the static and the kinematic approaches. Information on the unit cell failure modes can also be obtained by representing the optimal failure mechanisms. In a companion paper, the so-obtained homogenized strength criteria will be used to compute ultimate loads of global plate structures.  相似文献   

2.
多孔材料塑性极限载荷及其破坏模式分析   总被引:4,自引:1,他引:4  
运用塑性力学中的机动极限分析理论,研究韧性基体多孔材料的塑性极限承载能力和破坏模式。以多孔材料的细观结构为研究对象,将细观力学中的均匀化理论引入到塑性极限分析中,并结合有限元技术,建立细观结构极限载荷的一般计算格式,并提出相应的求解算法。数值算例表明:细观孔洞对材料的宏观强度影响明显;在单向拉伸作用下,孔洞呈现膨胀扩大规律;多孔材料破坏源于基体塑性区的贯通。  相似文献   

3.
The load-bearing capacities of ductile composite materials and structures are studied by means of a combined micro/macromechanics approach. Firstly, on the microscopic scale, the aim is to get the macroscopic strength domains by means of the homogenization theory of micromechanics. A representative volume element (RVE) is selected to reflect the microstructures of the composite materials. By introducing the homogenization theory into the kinematic limit theorem of plastic limit analysis, an optimization format to directly calculate the limit loads of the RVE is obtained. And the macroscopic yield criterion can be determined according to the relation between macroscopic and microscopic fields. Secondly, on the macroscopic scale, by introducing the Hill's yield criterion into the kinematic limit theorem, the limit loads of orthotropic structures such as unidirectional fiber-reinforced composite structures are worked out. The finite element modeling of the kinematic limit analysis is deduced into a nonlinear mathematical programming with equality-constraint conditions that can be solved by means of a direct iterative algorithm. Finally, some examples are illustrated to show the application of the present approach. Project supported by the National Natural Science Foundation of China (No. 19902007), the National Foundation for Excellent Doctoral Dissertation of China (No. 200025), the Fund of the Ministry of Education of China for Returned Oversea Scholars and the Basic Research Foundation of Tsinghua University.  相似文献   

4.
We consider bars of arbitrary shape made of a homogeneous anisotropic material. In the general case, all six internal force factors (three forces and three moments) are simultaneously nonzero in the transverse cross-sections of the bar. We consider the case of small displacements and strains of the bar. Using the rigid-plastic model of a strained rigid body, the associated strain law, and the traditional hypotheses of static and kinematic character for the bars, we derive parametric equations for the limit surface (the strength surface) in the space of internal forces and moments acting in the the transverse cross-section. We present several versions of the obtained equations in specific cases (for orthotropy, transversal isotropy, and isotropy) and some numerical examples.  相似文献   

5.
A typical doubly-reinforced concrete rectangular plate is subjected to quasi-static (and more general quasiperiodic dynamic) transverse loads. The amount of reinforcements can be different in the upper and lower layers, in the central and rear parts of the plate, and in different directions, as usually designed in practice. An upper bound kinematic approach, which involves construction of potential collapse kinematic fields with plastic hinge lines, is developed to evaluate the non-shakedown loads corresponding to the respective collapse modes. The relations between the non-shakedown load parameters (frequency, amplitude limits) and the reinforcement parameters are derived for practical use. The kinematic assumptions with plastic hinge lines reduce the set of admissible kinematic fields for our upper bound approach, however the procedure appears relatively simple, visual, and can be developed to investigate the behaviour of other plates in various loading and reinforcement schemes, like the respective approach of plastic limit analysis, which was restricted to static loading.  相似文献   

6.
The shakedown kinematic approach is used to analyze the collapse modes for a circular plate subjected to cyclic loads distributed axisymmetrically. Depending upon the loading scheme and parameters, the plate may fail by instantaneous, incremental, or alternating plasticity collapse. For quasistatic processes the nonshakedown load may be smaller than the instantaneous plastic limit load. In the case of periodic dynamic loading, which lies outside the framework of plastic limit analysis, the frequency parameter, besides the load amplitudes, can significantly influence the nonshakedown behavior of the plate.  相似文献   

7.
基于均匀化理论韧性复合材料塑性极限分析   总被引:6,自引:0,他引:6  
运用细观力学中的均匀化方法分析了韧性复合材料的塑性极限承载能力.从反映复合材料细观结构的代表性胞元入手,将均匀化理论运用到塑性极限分析中,计算由理想刚塑性、Mises组分材料构成的复合材料的极限承载能力.运用机动极限方法和有限元技术,最终将上述问题归结为求解一组带等式约束的非线性数学规划问题,并采用一种无搜索直接迭代算法求解.为复合材料的强度分析提供了一个有效手段.  相似文献   

8.
In the first part of this work (Bleyer and de Buhan, 2014), the determination of the macroscopic strength criterion of periodic thin plates has been addressed by means of the yield design homogenization theory and its associated numerical procedures. The present paper aims at using such numerically computed homogenized strength criteria in order to evaluate limit load estimates of global plate structures. The yield line method being a common kinematic approach for the yield design of plates, which enables to obtain upper bound estimates quite efficiently, it is first shown that its extension to the case of complex strength criteria as those calculated from the homogenization method, necessitates the computation of a function depending on one single parameter. A simple analytical example on a reinforced rectangular plate illustrates the simplicity of the method. The case of numerical yield line method being also rapidly mentioned, a more refined finite element-based upper bound approach is also proposed, taking dissipation through curvature as well as angular jumps into account. In this case, an approximation procedure is proposed to treat the curvature term, based upon an algorithm approximating the original macroscopic strength criterion by a convex hull of ellipsoids. Numerical examples are presented to assess the efficiency of the different methods.  相似文献   

9.
We study the elastic stability of infinite inhomogeneous thin plates on an elastic foundation under in-plane compression. The elastic stiffness constants depend on the coordinate variable in the thickness direction of the plate. The elastic foundation is represented as a Winkler-type model characterized by linear and nonlinear spring constants. First we derive the Föppl–von Kármán equations by taking variations of the elastic strain energy. Next we develop the linear stability analysis of the plate under uniform in-plane compression and explicitly derive the critical loads and wave numbers for particular three cases. The effects of the material inhomogeneity, material orthotropy and loading orthotropy on the critical states are examined independently. Finally, we perform a weakly nonlinear analysis of the plate at the onset of the buckling instability. With the multiple scales method, the amplitude equations for the unstable modes that provide insight into the mode type and its amplitude are derived and then the effect of the material inhomogeneity on buckling modes are evaluated qualitatively.  相似文献   

10.
Shakedown static and kinematic theorems for elastic–plastic (generally nonlinear) kinematic hardening solids are derived in classical (path-independence) spirit with new constructions. The generally plastic-deformation-history-dependent hardening curve is assumed to be limited by the initial yield stress and ultimate yield strength, and to obey a positive hysteresis postulate for closed plastic cycles, but else can be arbitrary and unspecified. The theorems reveal that the shakedown of structures is not affected by the particular form of the hardening curve, but just by the initial and ultimate yield stresses. While the ultimate yield strength is clearly defined macroscopically and attached to the incremental collapse mode with unbounded plastic deformations, the initial yield stress, which is responsible for the bounded cyclic plasticity collapse mode, should not be taken as the convenient one at a fixed amount of plastic deformation (0.2%), but is suggested to be taken as low as the fatigue limit to preserve the classical load-history-independence spirit of the shakedown theorems. Otherwise, for our pragmatic application purpose, it may be given empirical values between the low fatigue limit and high ultimate yield stresses according to particular loading processes considered, which may range anywhere between the high-cycle and low-cycle ones. The theorems appear as simple as those of Melan and Koiter for perfect plasticity but applied to the much larger class of more realistic kinematic hardening materials.  相似文献   

11.
Earthquake surveys have demonstrated that the lack of out-of-plane strength is a primary cause of failure in many traditional forms of masonry. Moreover, bearing walls are relatively thick and, as a matter of fact, many codes of practice impose a minimal slenderness for them, as for instance the recent Italian O.P.C.M. 3431 [2005. Ulteriori modifiche ed integrazioni all’OPCM 3274/03 (in Italian) and O.P.C.M. 3274, 20/03/2003, Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica (in Italian)], in which the upper bound slenderness is fixed respectively equal to 12 for artificial bricks and 10 for natural blocks masonry. In this context, a formulation at failure for regular assemblages of bricks based both on homogenization and Reissner–Mindlin theory seems particularly attractive. In this paper a kinematic limit analysis approach under the hypotheses of the thick plate theory is developed for the derivation of the macroscopic failure surfaces of masonry out-of-plane loaded. The behavior of a 3D system of blocks connected by interfaces is identified with a 2D Reissner–Mindlin plate. Infinitely resistant blocks connected by interfaces (joints) with a Mohr–Coulomb failure criterion with tension cut-off and compressive cap are considered. Finally, an associated flow rule for joints is adopted. In this way, the macroscopic masonry failure surface is obtained as a function of the macroscopic bending moments, torsional moments and shear forces by means of a linear programming problem in which the internal power dissipated is minimized, once that a subclass of possible deformation modes is a priori chosen. Several examples of technical relevance are presented and comparisons with previously developed Kirchhoff–Love static [Milani, G., Lourenço, P.B., Tralli, A., 2006b. A homogenization approach for the limit analysis of out-of-plane loaded masonry walls. J. Struct. Eng. ASCE (in press)] and kinematic [Sab, K., 2003.Yield design of thin periodic plates by a homogenisation technique and an application to masonry walls. C.R. Mech. 331, 641–646] failure surfaces are provided. Finally, two meaningful structural examples are reported, the first concerning a masonry wall under cylindrical flexion, the second consisting of a rectangular plate with a central opening out-of-plane loaded. For both cases, the influence of the shear strength on the collapse load is estimated.  相似文献   

12.
The diametral compression test is commonly used to determine the tensile strength of brittle materials. For isotropic materials a simple relation based on specimen geometry and the applied load at failure is used to calculate the tensile strength. Previous to this work the effect of material orthotropy and material orientation on the specimen stress state had not been completely determined. In this study, both isotropic and orthotropic specimens were analyzed using a finite element analysis and experimentally verified by strain gage and photoelastic measurements. Further, this work investigated the effect of the applied load area on the specimen stress state. Results of this work show that there is a significant difference between the theoretical calculations based on the assumption of material isotropy when compared to an orthotropic material. This difference can be as much as 45 percent depending on the degree of orthotropy and the orientation. It was also determined that the applied load area and material orientation significantly influence the specimen stress state. An applied load area of 8 percent of the circumference was found to reduce the stresses in the applied load region.  相似文献   

13.
In this paper, a nonlinear numerical technique is developed to calculate the plastic limit loads and failure modes of frictional materials by means of mathematical programming, limit analysis and the conventional displacement-based finite element method. The analysis is based on a general yield function which can take the form of the Mohr–Coulomb or Drucker–Prager criterion. By using an associated flow rule, a general nonlinear yield criterion can be directly introduced into the kinematic theorem of limit analysis without linearization. The plastic dissipation power can then be expressed in terms of kinematically admissible velocity fields and a nonlinear optimization formulation is obtained. The nonlinear formulation only has one constraint and requires considerably less computational effort than a linear programming formulation. The calculation is based entirely on kinematically admissible velocities without calculation of the stress field. The finite element formulation of kinematic limit analysis is developed and solved as a nonlinear mathematical programming problem subject to a single equality constraint. The objective function corresponds to the plastic dissipation power which is then minimized to give an upper bound to the true limit load. An effective, direct iterative algorithm for kinematic limit analysis is proposed in this paper to solve the resulting nonlinear mathematical programming problem. The effectiveness and efficiency of the proposed method have been illustrated through a number of numerical examples.  相似文献   

14.
On the basis of the static and kinematic theorems of probabilistic limit analysis [1-3], a new procedure to study the random strength of rigid-plastic structures is developed. This procedure leads to upper bounds to the failure probability, which show a remarkable improvement when compared with similar results so far obtained from “static” considerations. As an example, extensive numerical calculations carried out for a simple portal frame with random limit moments are presented and some observations are formulated.  相似文献   

15.
The idea that an elastic-plastic structure under given loading history may shake down to some purely elastic state (and hence to a safe state) after a finite amount of initial plastic deformation, can apply to many sophisticated material models with possible allowable changes of additional material characteristics, as has been done in the literature. Despite some claims to the contrary, it is shown; however, that the shakedown theorems in a Melan-Koiter path-independent sense have been extended successfully only for certain elastic-plastic hardening materials of practical significance. Shakedown of kinematic hardening material is determined by the ultimate and initial yield stresses, not the generally plastic deformation history-dependent hardening curve between. The initial yield stress is no longer the convenient one (corresponding to the plastic deformation at the level of 0.2%) as in usual elastic-plastic analysis but to be related to the shakedown safety requirement of the structure and should be as small as the fatigue limit for arbitrary high-cycle loading. Though the ultimate yield strength is well defined in the standard monotonic loading experiment, it also should be reduced to the so-called “high-cycle ratchetting” stress for the path-independent shakedown analysis. A reduced simple form of the shakedown kinematic theorem without time integrals is conjectured for general practical uses. Application of the theorem is illustrated by examples for a hollow cylinder, sphere, and a clamped disk, under variable (including quasiperiodic dynamic) pressure.  相似文献   

16.
In this paper we discuss the adoption of the anisotropic hardening model due to the existence of Bauschinger effect when thin plate is applied by repeated loading. The loading condition of thin plates for linear kinematic hardening has been deduced in terms of generalized forces and generalized plastic deformation. And it can be extended to nonlinear kinematic hardening and mixed hardening. Finally as an example the numerical results are obtained for a circular plate.  相似文献   

17.
Two-wythes masonry walls arranged in English bond texture were often used in the past as bearing panels in seismic area. On the other hand, earthquake surveys have demonstrated that masonry strength under horizontal actions is usually insufficient, causing premature collapses of masonry buildings, often ascribed to out-of-plane actions. Furthermore, many codes of practice impose for new brickwork walls a minimal slenderness, which for instance is fixed by the Italian O.P.C.M. 3431 equal to 12 for artificial bricks and 10 for natural blocks masonry.For the above reasons, the analysis at failure of English bond brickwork walls under out-of-plane actions is a topic that deserves consideration, despite the fact that almost the totality of the studies of masonry at failure is devoted to running bond arrangements. Furthermore, it must be noted that an approach based on the analysis of running bond texture – in comparison with English bond pattern – is not suitable for the investigation of the behavior of bearing panels.In this framework, in the present paper, a Reissner–Mindlin kinematic limit analysis approach is presented for the derivation of the macroscopic failure surfaces of two-wythes masonry arranged in English bond texture. In particular, the behavior of a 3D system constituted by infinitely resistant bricks connected by joints reduced to interfaces with frictional behavior and limited tensile/compressive strength is identified with a 2D Reissner–Mindlin plate. In this way, assuming both an associated flow rule for the constituent materials and a finite subclass of possible deformation modes, an upper bound approximation of macroscopic English bond masonry failure surfaces is obtained as a function of macroscopic bending moments, torsion and shear forces.Several examples of technical relevance are treated both at a cell level and at a structural level, addressing the differences in terms of collapse loads and failure surfaces due to different textures and constituent laws for joints. Finally, two meaningful structural examples consisting of a panel in cylindrical flexion and a masonry slab constrained at three edges and out-of-plane loaded are discussed. A detailed comparison in terms of deformed shapes at collapse and failure loads between a 2D FE Reissner–Mindlin limit analysis approach and a full 3D heterogeneous FE model shows the reliability of the results obtained using the kinematic identification approach proposed.  相似文献   

18.
We consider a particular in-plane elastic orthotropy observed experimentally for various types of paper, namely: S 1111+S 2222−2S 1122=S 1212, where S ijkm are components of the in-plane compliance tensor. This is a statement of the invariance of in-plane shear compliance S 1212, which has been observed in some studies but questioned in others. We present a possible explanation of this “special orthotropy” of paper, using an analysis in which paper is modeled as a quasi-planar random microstructure of interacting fiber-beams – a model especially well suited for low basis weight papers. First, it is shown analytically that without disorder a periodic fiber network fails the special orthotropy. Next, using a computational mechanics model, we demonstrate that two-scale geometric disorder in a fiber network is necessary to explain this orthotropy. Indeed, disordered networks with weak flocculation best satisfy this relationship. It is shown that no special angular distribution function of fibers is required, and that the uniform strain assumption should not be used. Finally, it follows from an analogy to the thermal conductivity problem that the kinematic boundary conditions, rather than the traction ones, lead quite rapidly to relatively scale-independent effective constitutive responses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The present contribution deals with the onset of local buckling of compressively loaded thin-walled beams with open I, C, Z, T and L-cross-sections made of laminated composite materials. The method employs a discrete plate analysis approach in the course of which each structural subelement of interest—which presently is the flange—of the thin-walled cross-section is considered as a separate composite plate with elastic rotational restraints at those edges where an adjacent substructural element is located. While in many investigations the lamination schemes of webs and flanges are considered to be purely orthotropic, in the present paper the laminate layups are allowed to be of an arbitrary non-orthotropic nature, which also allows for the analysis of laminates with inherent bending–torsion coupling. The analysis of the buckling loads of the flanges of thin-walled composite beams is performed using the Ritz-method for which some especially adjusted displacement shape functions are employed. For the case of pure orthotropy, a novel closed-form solution is described. The accuracy of the employed approaches is established by comparison with accompanying finite element simulations of thin-walled composite beams. It is revealed that the presented methodology is highly efficient in terms of computational effort and yet performs with satisfying accuracy, which makes it very attractive for actual practical applications whenever the local stability behaviour of wide-flange thin-walled composite beams is to be considered.  相似文献   

20.
In this paper, a failure criterion for reinforced concrete plates is derived through the kinematic method in the framework of the limit analysis theory. This criterion is expressed in terms of the stress resultant variables: membrane force, shear force and bending moment at once. The aim of the authors is to be able to predict the failure of reinforced concrete plate structures in statics or in slow dynamics using directly the internal forces (membrane and shear forces and moment) resulting from a finite-element computation.In a first step, a beam criterion is derived. The closed form expression of the criterion shows that it is made up of two parts, one independent of the moment (i.e. depending only on the normal force and the shear force) and one depending on the normal force, the shear force and the bending moment. This structure of the criterion allows to determine two failure modes: shear failure and bending failure.Then in a second step, the beam criterion is extended to the case of reinforced concrete plates. The obtained criterion is partly numerical and partly a close form expression. It gives an upper bound of the load, and when this limit load is reached, the criterion is able to supply, on one hand, the failure mode (as seen in the beam case) and, on the other hand, the angles of the failure plane in the reinforced concrete plate section.Thirdly, the criterion is implemented in the finite element software Europlexus and validated with respect to punching experimental tests. We show that the criterion must be used with an effectiveness factor applied on the concrete compressive strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号