首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performances of gas chromatography with mass spectrometry and of comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two‐dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution–alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity‐exposed samples. Examination of the results confirmed the outperformance of comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in Dmagna samples. The peak areas of multivariate curve resolution–alternating least squares resolved elution profiles in every sample analyzed by comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt‐exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de‐regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation.  相似文献   

2.
Interactive visualization of data from a new generation of chemical imaging systems requires coding that is efficient and accessible. New technologies for secondary ion mass spectrometry (SIMS) generate large three‐dimensional, hyperspectral datasets with high spatial and spectral resolution. Interactive visualization is important for chemical analysis, but the raw dataset size exceeds the memory capacities of typical current computer systems and is a significant obstacle. This paper reports the development of a lossless coding method that is memory efficient, enabling large SIMS datasets to be held in fast memory, and supports quick access for interactive visualization. The approach provides pixel indexing, as required for chemical imaging applications, and is based on the statistical characteristics of the data. The method uses differential time‐of‐flight to effect mass‐spectral run‐length‐encoding and uses a scheme for variable‐length, byte‐unit representations for both mass‐spectral time‐of‐flight and intensity values. Experiments demonstrate high compression rates and fast access. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.

Rationale

Mass spectrometry imaging (MSI) is a powerful tool for mapping the surface of a sample. Time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) and atmospheric pressure matrix‐assisted laser desorption/ionization (AP‐MALDI) offer complementary capabilities. Here, we present a workflow to apply both techniques to a single tissue section and combine the resulting data for the example of human colon cancer tissue.

Methods

Following cryo‐sectioning, images were acquired using the high spatial resolution (1 μm pixel size) provided by TOF‐SIMS. The same section was then coated with a para‐nitroaniline matrix and images were acquired using AP‐MALDI coupled to an Orbitrap mass spectrometer, offering high mass resolution, high mass accuracy and tandem mass spectrometry (MS/MS) capabilities. Datasets provided by both mass spectrometers were converted into the open and vendor‐independent imzML file format and processed with the open‐source software MSiReader.

Results

The TOF‐SIMS and AP‐MALDI mass spectra show strong signals of fatty acids, cholesterol, phosphatidylcholine and sphingomyelin. We showed a high correlation between the fatty acid ions detected with TOF‐SIMS in negative ion mode and the phosphatidylcholine ions detected with AP‐MALDI in positive ion mode using a similar setting for visualization. Histological staining on the same section allowed the identification of the anatomical structures and their correlation with the ion images.

Conclusions

This multimodal approach using two MSI platforms shows an excellent complementarity for the localization and identification of lipids. The spatial resolution of both systems is at or close to cellular dimensions, and thus spatial correlation can only be obtained if the same tissue section is analyzed sequentially. Data processing based on imzML allows a real correlation of the imaging datasets provided by these two technologies and opens the way for a more complete molecular view of the anatomical structures of biological tissues.
  相似文献   

4.
A multimodal workflow for mass spectrometry imaging was developed that combines MALDI imaging with protein identification and quantification by liquid chromatography tandem mass spectrometry (LC‐MS/MS). Thin tissue sections were analyzed by MALDI imaging, and the regions of interest (ROI) were identified using a smoothing and edge detection procedure. A midinfrared laser at 3‐μm wavelength was used to remove the ROI from the brain tissue section after MALDI mass spectrometry imaging (MALDI MSI). The captured material was processed using a single‐pot solid‐phase‐enhanced sample preparation (SP3) method and analyzed by LC‐MS/MS using ion mobility (IM) enhanced data independent acquisition (DIA) to identify and quantify proteins; more than 600 proteins were identified. Using a modified database that included isoform and the post‐translational modifications chain, loss of the initial methionine, and acetylation, 14 MALDI MSI peaks were identified. Comparison of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the identified proteins was achieved through an evolutionary relationships classification system.  相似文献   

5.
The essential oil components of geranium oil cultivated in center of Iran were identified and determined using gas chromatography-mass spectrometry data combined with the chemometric resolution techniques. A total of 61 components accounting for 91.51% were identified using similarity searches between the mass spectra and MS database. This number was extended to 85 components using chemometric techniques. Various chemometric methods such as morphological scores, simplified Borgen method (SBM) and fixed size moving window evolving factor analysis (FSMWEFA) were used for determining the number of components, pure variables, zero concentration and selective regions. Then the overlapping peak clusters were resolved into pure chromatograms and pure mass spectra using heuristic evolving latent projections (HELP) method. A characteristic feature of the Iranian geranium oil is the absence of 10-epi-gamma-eudesmol in its constituents compared with the oil from northern and southern parts of India. The results of this work show that combination of hyphenated chromatographic methods and resolution techniques provide a complementary method for accurate analysis of essential oils.  相似文献   

6.
Time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) imaging using cluster primary ion beams is used for the identification of the pigments in the painting of Rebecca and Eliezer at the Well by Nicolas Poussin. The combination of the high mass resolution of the technique with a sub‐micrometer spatial resolution offered by a delayed extraction of the secondary ions, together with the possibility to simultaneously identifying both minerals and organics, has proved to be the method of choice for the study of the stratigraphy of a paint cross section. The chemical compositions of small grains are shown with the help of a thorough processing of the data, with images of specific ions, mass spectra extracted from small regions of interest, and profiles drawn along the different painting layers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
We present an integrated approach to rapidly identify anti‐inflammatory compounds of TongmaiYangxin Pills (TMYXP), a botanical drug for the treatment of cardiovascular disease. Liquid chromatography coupled with high‐resolution mass spectrometry was used to analyze the chemical composition of TMYXP. Eighty compounds of TMYXP including flavonoids, coumarins, iridoid glycosides, saponins, and lignans, were identified unambiguously or tentatively. After the rapid isolation and bioassay, 18 fractions of TMYXP were obtained and their anti‐inflammatory activities were evaluated in lipopolysaccharide‐stimulated RAW 264.7 macrophages. We performed chemometric analysis to reveal the correlation between the chemical and pharmacological information of the fractions to facilitate the identification of active compounds. To verify the reliability of the proposed method in discovering active components from a complex mixture, activities of seven compounds, which were positively or negatively related to bioactivity according to calculation, were validated in vitro. Results indicated that six active compounds with high R values exerted certain anti‐inflammatory effects in a dose‐dependent manner with IC50 values of 53.6–204.1 μM. Our findings suggest that the integrated use of identification based on high‐resolution mass spectrometry and chemometric methods could rapidly identify active compounds from complex mixture of natural products.  相似文献   

8.
Spatial lipidomics based on mass spectrometry imaging (MSI) is a powerful tool for fundamental biology studies and biomarker discovery. But the structure-resolving capability of MSI is limited because of the lack of multiplexed tandem mass spectrometry (MS/MS) method, primarily due to the small sample amount available from each pixel and the poor ion usage in MS/MS analysis. Here, we report a mobility-modulated sequential dissociation (MMSD) strategy for multiplex MS/MS imaging of distinct lipids from biological tissues. With ion mobility-enabled data-independent acquisition and automated spectrum deconvolution, MS/MS spectra of a large number of lipid species from each tissue pixel are acquired, at no expense of imaging speed. MMSD imaging is highlighted by MS/MS imaging of 24 structurally distinct lipids in the mouse brain and the revealing of the correlation of a structurally distinct phosphatidylethanolamine isomer (PE 18 : 1_18 : 1) from a human hepatocellular carcinoma (HCC) tissue. Mapping of structurally distinct lipid isomers is now enabled and spatial lipidomics becomes feasible for MSI.  相似文献   

9.
Identification of suspects via fingermark analysis is one of the mainstays of forensic science. The success in matching fingermarks, using conventional fingermark scanning and database searching, strongly relies on the enhancement method adopted for fingermark recovery; this in turn depends on the components present in the fingermarks, which will change over time. This work aims to develop a robust methodology for improved analytical detection of the fingermark components. For the first time, matrix‐assisted laser desorption/ionisation mass spectrometry imaging (MALDI‐MSI) has been used to image endogenous lipids from fresh and aged, groomed and ungroomed fingermarks. The methodology was initially developed using oleic acid which was detected along with its degradation products over a 7‐day period, at three different temperatures in a time‐course experiment. The optimised methodology was then transferred to the imaging analysis of real fingermark samples. Fingermark patterns were reconstructed by retrieving the m/z values of oleic acid and its degradation products. This allowed the three aged fingermarks to be distinguished. In order to prove that MALDI‐MSI can be used in a non‐destructive way, a simple washing protocol was adopted which returned a fingermark that could be further investigated with classical forensic approaches. The work reported here proves the potential and the feasibility of MALDI‐MSI for the forensic analysis of fingermarks, thus making it competitive with other MSI techniques such as desorption electrospray ionisation (DESI)‐MS. The feasibility of using MALDI‐MSI in fingermark ageing studies is also demonstrated along with the potential to be integrated into routine fingermark forensic analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Ambient mass spectrometry is useful for analyzing compounds that would be affected by other chemical procedures. Poison frogs are known to sequester alkaloids from their diet, but the sequestration pathway is unknown. Here, we describe methods for whole‐body cryosectioning of frogs and use desorption electrospray ionization mass spectrometry imaging (DESI‐MSI) to map the orally administered alkaloid histrionicotoxin 235A in a whole‐body section of the poison frog Dendrobates tinctorius. Our results show that whole‐body cryosectioning coupled with histochemical staining and DESI‐MSI is an effective technique to visualize alkaloid distribution and help elucidate the mechanisms involved in alkaloid sequestration in poison frogs.  相似文献   

11.
Achieving and maintaining high mass measurement accuracy (MMA) throughout a mass spectrometry imaging (MSI) experiment is vital to the identification of the observed ions. However, when using FTMS instruments, fluctuations in the total ion abundance at each pixel due to inherent biological variation in the tissue section can introduce space charge effects that systematically shift the observed mass. Herein we apply a recalibration based on the observed cyclotron frequency shift of ions found in the ambient laboratory environment, polydimethylcyclosiloxanes (PDMS). This calibration method is capable of achieving part per billion (ppb) mass accuracy with relatively high precision for an infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) MSI dataset. Comparisons with previously published mass calibration approaches are also presented.
Figure
?  相似文献   

12.
An optimized temperature-programmed gas chromatography–mass spectrometry system combined with chemometric methods was firstly applied to analyze the volatile components of M. biondii Pamp. A total of 65 components were identified using similarity searches between mass spectra and MS database. This number was extended to 80 components with the help of chemometric techniques. The peak purity of two-way data was controlled by fixed size moving window evolving factor analysis, two dimensional-evolving latent projection graph and three dimensional-evolving latent projection graph. Then the overlapped peak clusters were resolved using heuristic evolving latent projection. The results prove that the reported approach is powerful for the analysis of complex herbal samples.  相似文献   

13.
Three‐dimensional (3D) cell culture is a rapidly emerging field, which mimics some of the physiological conditions of human tissues. In cancer biology, it is considered a useful tool in predicting in vivo chemotherapy responses, compared with conventional two‐dimensional (2D) cell culture. We have developed a novel 3D cell culture model of osteosarcoma composed of aggregated proliferative tumour spheroids, which shows regions of tumour heterogeneity formed by aggregated spheroids of polyclonal tumour cells. Aggregated spheroids show local necrotic and apoptotic regions and have sizes suitable for the study of spatial distribution of metabolites by mass spectrometry imaging (MSI). We have used this model to perform a proof‐of‐principle study showing a heterogeneous distribution of endogenous metabolites that colocalise with the necrotic core and apoptotic regions in this model. Cytotoxic chemotherapy (doxorubicin) responses were significantly attenuated in our 3D cell culture model compared with those of standard cell culture, as determined by resazurin assay, despite sufficient doxorubicin diffusion demonstrated by localisation throughout the 3D constructs. Finally, changes to the distribution of endogenous metabolites in response to doxorubicin were readily detected by MSI. Principal component analysis identified 50 metabolites which differed most in their abundance between treatment groups, and of these, 10 were identified by both in‐software t test and mixed‐effects analysis of variance (ANOVA). Subsequent independent MSIs of identified species were consistent with principle component analysis findings. This proof‐of‐principle study shows for the first time that chemotherapy‐induced changes in metabolite abundance and distribution may be determined in 3D cell culture by MSI, highlighting this method as a potentially useful tool in the elucidation of chemotherapy responses as an alternative to in vivo testing.  相似文献   

14.
《Analytical letters》2012,45(14):2384-2393
Near infrared spectroscopy in combination with appropriate chemometric methods is an effective technique for quantitative analysis of parameters of interest for the pharmaceutical industry. In this study, the artificial neural network (ANN) was applied to monitor critical parameters (compression force, tablet hardness, mean particle size, and active pharmaceutical ingredient concentration of tablets) in the process of naproxen pharmaceutical preparation. The performance of ANN was compared to linear methods (partial least squares regression (PLS) and synergy interval partial squares (siPLS)). The ANN models for compression force, tablet hardness, mean particle size, and active pharmaceutical ingredient concentration of tablets yielded the low root mean square error of prediction (RMSEP) values of 0.936 KN, 0.302 kg, 4.49 mg, and 2.14 µm, respectively. The predictive ability of the PLS model was improved by siPLS with selection of spectral regions and the best performance among all calibration methods was showed by the nonlinear method (ANN). Effective models were built by using these approaches using near infrared spectroscopy.  相似文献   

15.
There are numerous articles published for geographical discrimination of tea. However, few research works focused on the authentication and traceability of Westlake Longjing green tea from the first‐ and second‐grade producing regions because the tea trees are planted in a limited growing zone with identical cultivate condition. In this work, a comprehensive analytical strategy was proposed by ultrahigh performance liquid chromatography‐quadrupole time‐of‐flight mass spectrometry‐based untargeted metabolomics coupled with chemometrics. The automatic untargeted data analysis strategy was introduced to screen metabolites that expressed significantly among different regions. Chromatographic features of metabolites can be automatically and efficiently extracted and registered. Meanwhile, those that were valuable for geographical origin discrimination were screened based on statistical analysis and contents in samples. Metabolite identification was performed based on high‐resolution mass values and tandem mass spectra of screened peaks. Twenty metabolites were identified, based on which the two‐way encoding partial least squares discrimination analysis was built for geographical origin prediction. Monte Caro simulation results indicated that prediction accuracy was up to 99%. Our strategy can be applicable for practical applications in the quality control of Westlake Longjing green tea.  相似文献   

16.
Desorption electrospray ionization mass spectrometry (DESI‐MS) and easy ambient sonic‐spray ionization mass spectrometry (EASI‐MS) are employed here in the forensic analysis of chemical compounds found in condoms and relative traces, and their analytical performances are compared. Statistical analysis of data obtained from mass spectra only was applied in order to obtain classification rules for distinguishing ten types of condoms. In particular, two supervised chemometric techniques [linear discriminant analysis (LDA) and soft independent modeling of class analogy (SIMCA)] were carried out on absolute and relative intensity values to test the performances of statistical models in terms of predictive capacity. The achieved classification of samples was excellent because of the high prediction percentages of the method used both for DESI and EASI mass spectrometry analyses, confirming these two as potential ambient ionization techniques for forensic analyses in case of sexual assault crimes. EASI‐MS showed 99% prediction ability for LDA using relative data and 100% prediction ability for SIMCA using both absolute and relative ones, while DESI showed 94% prediction ability for both LDA and SIMCA. The absence of any sample preparation technique gives advantages in terms of sample preservation and reduced contamination, allowing successive analyses to be performed on the same sample by other techniques. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A reliable method, combining qualitative analysis by high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry and quantitative assessment by high‐performance liquid chromatography with photodiode array detection, has been developed to simultaneously analyze flavonoids and alkaloids in lotus leaf extracts. In the qualitative analysis, a total of 30 compounds, including 12 flavonoids, 16 alkaloids, and two proanthocyanidins, were identified. The fragmentation behaviors of four types of flavone glycoside and three types of alkaloid are summarized. The mass spectra of four representative components, quercetin 3‐O‐glucuronide, norcoclaurine, nuciferine, and neferine, are shown to illustrate their fragmentation pathways. Five pairs of isomers were detected and three of them were distinguished by comparing the elution order with reference substances and the mass spectrometry data with reported data. In the quantitative analysis, 30 lotus leaf samples from different regions were analyzed to investigate the proportion of eight representative compounds. Quercetin 3‐O‐glucuronide was found to be the predominant constituent of lotus leaf extracts. For further discrimination among the samples, hierarchical cluster analysis, and principal component analysis, based on the areas of the eight quantitative peaks, were carried out.  相似文献   

18.
Detailed kinetic studies during the cationic ring‐opening polymerization (CROP) of 2‐ethyl‐2‐oxazoline (EtOx) are conducted using four bifunctional bromo‐type initiators in N,N‐dimethylformamide (DMF) at 140 °C. Serving as models to quantify chain transfer to monomer occurring during the CROP initiated by monofunctional initiators, size exclusion chromatography (SEC) resolves a second molar mass distribution with lower molar mass at initial [monomer] to [initiation site] ratios ([M]0/[I]0) of 25, while the resolution is insufficient at [M]0/[I]0 of 10. Slightly slow initiation is revealed at [M]0/[I]0 = 25, which prohibits the derivation of chain transfer rates by fitting of the size exclusion chromatography (SEC) data. Although conventional kinetic plots give no indication of significant amounts of chain transfer, the molar mass distributions resolved by SEC can unambiguously be identified as such by matrix‐assisted laser desorption/ionization mass spectrometry (MALDI MS) in both the high as well as the low m /z regions of the mass spectra.  相似文献   

19.
The field of mass spectrometry imaging (MSI) is constantly evolving to analyze a diverse array of biological systems. A common goal is the need to resolve cellular and subcellular heterogeneity with high spatial resolution. As the field continues to progress towards high spatial resolution, other parameters must be considered when developing a practical method. Here, we discuss the impacts of high spatial resolution on the time of acquisition and the associated implications they have on an MSI analysis (e.g., area of the region of interest). This work presents a brief tutorial serving to evaluate high spatial resolution MSI relative to time of acquisition and data file size.  相似文献   

20.
This study was designed to classify and identify closely related thistle species in the genus Cirsium, as well as Carduus and Cephalonoplos species, which are also thistles. The comprehensive and untargeted metabolite profiles of nine Korean thistles were determined using ultra high performance liquid chromatography combined with hybrid quadrupole time‐of‐flight mass spectrometry. The difference in metabolite profiles among species was explored using principal component analysis and hierarchical clustering analysis. The significantly different metabolites (Bonferroni‐corrected P‐value < 0.001) were used to construct a partial least squares discriminant analysis model to predict the species of thistle. Nine species were successfully classified using a partial least squares discriminant analysis model and confirmed using a cross‐validation method. Species with similar features were grouped based on unique patterns in variable clusters. The present study suggests that liquid chromatography with quadrupole time‐of‐flight mass spectrometry untargeted metabolomic profiling with chemometric analysis is an efficient and powerful tool for discriminating between different species of medicinal herbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号