首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a constitutive model with a temperature and strain rate dependent flow stress (Bergstrom hardening rule) and modified Armstrong-Frederick kinematic evolution equation for elastoplastic hardening materials is introduced. Based on the multiplicative decomposition of the deformation gradient,new kinematic relations for the elastic and plastic left stretch tensors as well as the plastic deformation-dependent spin tensor are proposed. Also, a closed-form solution has been obtained for the elastic and plastic left stretch tensors for the simple shear problem.To evaluate model validity, results are compared with known experimental data for SUS 304 stainless steel, which shows a good agreement with the results of the proposed theoretical model.Finally, the stress-deformation curve, as predicted by the model, is plotted for the simple shear problem at room and elevated temperatures using the same material properties for AA5754-O aluminium alloy.  相似文献   

2.
Magnesium alloy sheets have been extending their field of applications to automotive and electronic industries taking advantage of their excellent light weight property. In addition to well-known lower formability, magnesium alloys have unique mechanical properties which have not been thoroughly studied: high in-plane anisotropy/asymmetry of yield stress and hardening response. The reason of the unusual mechanical behavior of magnesium alloys has been understood by the limited symmetry crystal structure of HCP metals and thus by deformation twinning. In this paper, the phenomenological continuum plasticity models considering the unusual plastic behavior of magnesium alloy sheet were developed for a finite element analysis. A hardening law based on two-surface model was further extended to consider the general stress–strain response of metal sheets including Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous in-plane tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. In terms of the anisotropy and asymmetry of the initial yield stress, the Drucker–Prager’s pressure dependent yield surface was modified to include the anisotropy of magnesium alloy. The numerical formulations and characterization procedures were also presented and finally the correlation of simulation with measurements was performed to validate the proposed theory.  相似文献   

3.
This paper describes a simple alternate approach to the difficult problem of modeling material behavior. Starting from a general representation for a rate-type constitutive equation, it is shown by example how sets of test data may be used to derive restrictions on the scalar functions appearing in the representation. It is not possible to determine these functions from experimental data, but the aforementioned restrictions serve as a guide in their eventual definition. The implications are examined for hypo-elastic, isotropically hardening plastic, and kinematically hardening plastic materials. A simple model for the evolution of the “back-stress,” in a kinematic-hardening plasticity theory, that is entirely analogous to a hypoelastic stress-strain relation is postulated and examined in detail in modeling a finitely plastic tension-torsion test. The implementation of rate-type material models in finite element algorithms is also discussed.  相似文献   

4.
Constitutive modeling of ice in the high strain rate regime   总被引:1,自引:0,他引:1  
The objective of the present work is to propose a constitutive model for ice by considering the influence of important parameters such as strain rate dependence and pressure sensitivity on the response of the material. In this regard, the constitutive model proposed by Carney et al. (2006) is considered as a starting basis and subsequently modified to incorporate the effect of brittle cracking within a continuum damage mechanics framework. The damage is taken to occur in the form of distributed cracking within the material during impact which is consistent with experimental observations. At the point of failure, the material is assumed to be fluid-like with deviatoric stress almost dropping down to zero. The constitutive model is implemented in a general purpose finite element code using an explicit formulation. Several single element tests under uniaxial tension and compression, as well as biaxial loading are conducted in order to understand the performance of the model. Few large size simulations are also performed to understand the capability of the model to predict brittle damage evolution in un-notched and notched three point bend specimens. The proposed model predicts lower strength under tensile loading as compared to compressive loading which is in tune with experimental observations. Further the model also asserts the strain rate dependency of the strength behavior under both compressive as well as tensile loading, which also corroborates well with experimental results.  相似文献   

5.
A new constitutive model describing the pressure dependence of plasticity and fracture in solder joints is proposed. The pressure dependence of the solders flow stress is obtained from the Peierls stress necessary to move mobile dislocations. Conservation of volume during plastic deformation is achieved through a deviatoric associated flow rule. Fracture is considered as a result of damage accumulation depending on the amount of plastic strain and triaxiality of stress the sample has experienced. The constitutive model was implemented in the FEM code Abaqus using the user subroutine UMAT. The model predictions were compared to experimental results of tensile tests performed with Sn-3.5Ag solder joints of various thicknesses. Ultimate tensile strength and ductility showed a strong dependency on the solder joints geometry. It is demonstrated that the model can nicely be fitted to experimental results.  相似文献   

6.
Cyclic plasticity experiments were conducted on a pure polycrystalline copper and the material was found to display significant cyclic hardening and nonproportional hardening. An effort was made to describe the cyclic plasticity behavior of the material. The model is based on the framework using a yield surface together with the Armstrong–Frederick type kinematic hardening rule. No isotropic hardening is considered and the yield stress is assumed to be a constant. The backstress is decomposed into additive parts with each part following the Armstrong–Frederick type hardening rule. A memory surface in the plastic strain space is used to account for the strain range effect. The Tanaka fourth order tensor is used to characterize nonproportional loading. A set of material parameters in the hardening rules are related to the strain memory surface size and they are used to capture the strain range effect and the dependence of cyclic hardening and nonproportional hardening on the loading magnitude. The constitutive model can describe well the transient behavior during cyclic hardening and nonproportional hardening of the polycrystalline copper. Modeling of long-term ratcheting deformation is a difficult task and further investigations are required.  相似文献   

7.
The challenge of describing in a generalized mathematical pattern the inelastic behavior of metals has led to the development of several constitutive models, especially in the field of cyclic plasticity, where phenomena with particular importance to low-cycle fatigue appear. Significant research efforts have been undertaken in studying and simulating the cyclic elastoplastic response of steels, while light metals, like aluminum and titanium, have attracted less attention. This paper provides a preliminary examination on the capacity of the Multi-component Armstrong and Frederick Multiplicative (MAFM) model to simulate effectively the cyclic mean stress relaxation and ratcheting of Aluminum Alloy 7050. The derived results indicate that the model is capable to describe successfully the complex cyclic plasticity phenomena exhibited by this alloy.  相似文献   

8.
We present a variational two-phase constitutive model capable of capturing the enhanced rate sensitivity in nanocrystalline (nc) and ultrafine-grained (ufg) fcc metals. The nc/ufg-material consists of a grain interior phase and a grain boundary affected zone (GBAZ). The behavior of the GBAZ is described by a rate-dependent isotropic porous plasticity model, whereas a rate-independent crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The scale bridging from a single grain to a polycrystal is done by a Taylor-type homogenization. It is shown that the enhanced rate sensitivity caused by the grain size refinement is successfully captured by the proposed model.  相似文献   

9.
Using the concept of an internal time as related to plastic strains, a differntial stress-strain relation for elastoplasticity is rederived, such that (i) the concept of a yield-surface is retained; (ii) the definitions of elastic and plastic processes are analogous to those in classical plasticity theory; and (iii) its computational implementation, via a “tangent-stiffness” finite element method and a “generalized-midpoint-radial-return” stress-integration algorithm, is simple and efficient. Also, using the concept of an internal time, as related to both the inelastic strains as well as the Newtonian time, a constitutive model for creep-plasticity interaction, is discussed. The problem of modeling experimental data for plasticity and creep, by the present analytical relations, as accurately as desired, is discussed. Numerical examples which illustrate the validity of the present relations are presented for the cases of cyclic plasticity and creep.  相似文献   

10.
The constitutive model for the unusual asymmetric hardening behavior of magnesium alloy sheet presented in a companion paper (Lee, M.G., Wagoner, R.H., Lee, J.K., Chung, K., Kim, H.Y., 2008. Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheet, Int. J. Plasticity 24(4), 545–582) was applied to the springback prediction in sheet metal forming. The implicit finite element program ABAQUS was utilized to implement the developed constitutive equations via user material subroutine. For the verification purpose, the springback of AZ31B magnesium alloy sheet was measured using the unconstrained cylindrical bending test of Numisheet (Numisheet ’2002 Benchmark Problem, 2002. In: Yang, D.Y., Oh, S.I., Huh, H., Kim, Y.H. (Eds.), Proceedings of 5th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Jeju, Korea) and 2D draw bend test. With the specially designed draw bend test the direct restraining force and long drawn distance were attainable, thus the measurement of the springback could be made with improved accuracy comparable with conventional U channel draw bend test. Besides the developed constitutive models, other models based on isotropic constitutive equations and the Chaboche type kinematic hardening model were also considered. Comparisons were made between simulated results by the finite element analysis and corresponding experiments and the newly proposed model showed enhanced prediction capability, which was also supported by the simple bending analysis adopting asymmetric stress–strain response.  相似文献   

11.
A multiplicative hardening function and a unified evolution rule of the hardening factors are proposed. The hardening factorf 1 is introduced to describe cyclic hardening with respect to the plastic strain range, whilef 2 andf 3 describe, respectively, instantaneous and hereditary additional hardening with respect to the nonproportionality of the plastic strain path. Two material dependent memory parametersa 1 anda 3 are introduced to keep the memory of the largest cyclic and additional hardening in the previous plastic deformation history. Different hardening mechanisms are then embedded into a thermomechanically consistent constitutive equation through the hardening function. The constitutive response of 304 and 316 stainless steels subjected to biaxial nonproportional cyclic loading is analyzed and the proposed model is critically verified by comparing the results with experimental results obtained by Tanaka et al., and Ohashi et al. The project supported by National Natural Science Foundation of China  相似文献   

12.
Typically, elastic and elastic-plastic theory are used in structural-analysis computer programs to model the mechanical behavior of high explosives; these models, however, do not fit the observed behavior of plastic-bonded explosives. This paper discusses the development of an equation-of-state creep model and a linear viscoelastic model for the analysis of these material systems and shows comparisons between experimental results and analytical-model predictions.  相似文献   

13.
We consider the plastic shearing of a strain-rate dependent material exhibiting strain hardening or strain softening, subjected to steady shearing. We establish the existence of classical solutions and study the stability of uniform shearing. For materials exhibiting strain hardening or a moderate degree of strain softening we show that, as t , every solution approaches, at specific rates of convergence, uniform shearing; thus shear bands do not form.  相似文献   

14.
In this paper a finite deformation constitutive model for rigid plastic hardening materials based on the logarithmic strain tensor is introduced. The flow rule of this constitutive model relates the corotational rate of the logarithmic strain tensor to the difference of the deviatoric Cauchy stress and the back stress tensors. The evolution equation for the kinematic hardening of this model relates the corotational rate of the back stress tensor to the corotational rate of the logarithmic strain tensor. Using Jaumann, Green–Naghdi, Eulerian and logarithmic corotational rates in the proposed constitutive model, stress–strain responses and subsequent yield surfaces are determined for rigid plastic kinematic and isotropic hardening materials in the simple shear problem at finite deformations.  相似文献   

15.
A finite strain hyper elasto-plastic constitutive model capable to describe non-linear kinematic hardening as well as non-linear isotropic hardening is presented. In addition to the intermediate configuration and in order to model kinematic hardening, an additional configuration is introduced – the center configuration; both configurations are chosen to be isoclinic. The yield condition is formulated in terms of the Mandel stress and a back-stress with a structure similar to the Mandel stress.It is shown that the non-dissipative part of the plastic velocity gradient not governed by the thermodynamical framework and the corresponding quantity associated with the kinematic hardening influence the material behaviour to a large extent when kinematic hardening is present. However, for isotropic elasticity and isotropic hardening plasticity it is shown that the non-dissipative quantities have no influence upon the stress–strain relation.As an example, kinematic hardening von Mises plasticity is considered, which fulfils the plastic incompressibility condition and is independent of the hydrostatic pressure. To evaluate the response and to examine the influence of the non-dissipative quantities, simple shear is considered; no stress oscillations occur.  相似文献   

16.
17.
In order to predict the life of engineering structures, it is necessary to investigate the strain distribution in notched members. In general, the Bauschinger Effect of materials under cyclic loading is not negligible, and so the anisotropic hardening model has been suggested. From the comparison between the calculated and experimental results in this paper, we can see that even the linear kinematic hardening model is quite suitable for strain analysis under cyclic loading.  相似文献   

18.
以纯铜棒材试样为研究对象,通过试验研究1、4、8道次等通道转角挤压(ECAP)后材料的单轴拉压循环行为,探讨ECAP后材料循环特性的变化,得到以下结论:(1)具有循环硬化特性的纯铜进行ECAP挤压后,其循环特性可转变为循环软化;(2)第一道次ECAP挤压对材料循环应力应变响应的强化作用最大,后续道次挤压对强化的效用迅速降低,4道次以后挤压的强化作用似可忽略不计;(3)因循环软化,纯铜经ECAP挤压后的循环应力应变曲线大大低于其单调拉伸应力应变曲线,与未经ECAP挤压的结果相反.论文研究表明,评估ECAP对材料的强化效果需同时考察材料单调加载和循环加载的力学性能.  相似文献   

19.
《力学快报》2022,12(6):100383
The present study is focused on the constitutive modeling for the mechanical behavior of rubber reinforced with filler particles. A filler-dependent energy density function is proposed with all the continuum mechanics-based necessities of an effective hyperelastic material model. The proposed invariant-based energy function comprises a single set of material parameters for a material subjected to several modes of loading conditions. The model solution agrees well with existing experimental results. Later, the effect of varying concentrations of filler particles in the rubber matrix is also studied.  相似文献   

20.
This work addresses the formulation of the thermodynamics of nonlocal plasticity using the gradient theory. The formulation is based on the nonlocality energy residual introduced by Eringen and Edelen (1972). Gradients are introduced for those variables associated with isotropic and kinematic hardening. The formulation applies to small strain gradient plasticity and makes use of the evanescent memory model for kinematic hardening. This is accomplished using the kinematic flux evolution as developed by Zbib and Aifantis (1988). Therefore, the present theory is a four nonlocal parameter-based theory that accounts for the influence of large variations in the plastic strain, accumulated plastic strain, accumulated plastic strain gradients, and the micromechanical evolution of the kinematic flux. Using the principle of virtual power and the laws of thermodynamics, thermodynamically-consistent equations are derived for the nonlocal plasticity yield criterion and associated flow rule. The presence of higher-order gradients in the plastic strain is shown to enhance a corresponding history variable which arises from the accumulation of the plastic strain gradients. Furthermore, anisotropy is introduced by plastic strain gradients in the form of kinematic hardening. Plastic strain gradients can be attributed to the net Burgers vector, while gradients in the accumulation of plastic strain are responsible for the introduction of isotropic hardening. The equilibrium between internal Cauchy stress and the microstresses conjugate to the higher-order gradients frames the yield criterion, which is obtained from the principle of virtual power. Microscopic boundary conditions, associated with plastic flow, are introduced to supplement the macroscopic boundary conditions of classical plasticity. The nonlocal formulation developed here preserves the classical assumption of local plasticity, wherein plastic flow direction is governed by the deviatoric Cauchy stress. The theory is applied to the problems of thin films on both soft and hard substrates. Numerical solutions are presented for bi-axial tension and simple shear loading of thin films on substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号