首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intermolecular potential energy surface of O(2)-H(2)O was investigated at ab initio MP2 and MRSDCI levels using the aug-cc-pVTZ basis set. The vibrational levels were evaluated by numerically solving the Schr?dinger equations for the nuclear motions with the ab initio potential functions using one- to three-dimensional finite-element methods. On the basis of the calculated partition functions, the equilibrium constant of the complex, K(p), was studied. The K(p) values at atmospheric temperatures of 200-300 K were found to be 1-2 orders of magnitude less than previous estimates from the harmonic oscillator approximation.  相似文献   

2.
The rate coefficient for the reaction has been determined in mixtures of nitric acid (HNO3) and argon in incident shock wave experiments. Quantitative OH time-histories were obtained by cw narrow-linewidth uv laser absorption of the R1(5) line of the A2 σ+X2 Πi (0,0) transition at 32606.56 cm?1 (vacuum). The experiments were conducted over the temperature range 1050–2380 K and the pressure range 0.18–0.60 atm. The second-order rate coefficient was determined to be with overall uncertainties of +11%, ?16% at high temperatures and +25%, ?22% at low temperatures. By incorporating data from previous investigations in the temperature range 298–578 K, the following expression is determined for the temperature range 298–2380 K © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Optical emission spectroscopy has been applied to study the spatially resolved measurements of the emission intensities of OH (A(2)Sigma-->X(2)Pi, 0-0) and N(2)(+) (B(2)Sigma(u)(+)-->X(2)Sigma(g)(+), 0-0, 391.4 nm) produced by a high-voltage positive pulsed streamer discharge consisting of a gas mixture of N(2) and H(2)O in a wire-plate reactor under severe electromagnetic interference at atmospheric pressure. The effects of pulse peak voltage, pulse repetition rate, and the added O(2) flow rate on the spatial distributions of the emission intensity of OH (A(2)Sigma-->X(2)Pi, 0-0) and N(2)(+) (B(2)Sigma(u)(+)-->X(2)Sigma(g)(+), 0-0, 391.4 nm) in the lengthwise direction (direction from wire to plate) are investigated. It has been found that the emission intensities of OH (A(2)Sigma-->X(2)Pi, 0-0) and N(2)(+) (B(2)Sigma(u)(+)-->X(2)Sigma(g)(+), 0-0, 391.4 nm) rise with an increase in both pulse peak voltage and pulse repetition rate and decrease with an increase in oxygen flows added in an N(2) and H(2)O gas mixture. The emission intensity of OH (A(2)Sigma-->X(2)Pi, 0-0) decreases with increasing the distance from the wire electrode. The emission intensity of N(2)(+) (B(2)Sigma(u)(+)-->X(2)Sigma(g)(+), 0-0, 391.4 nm) is nearly constant at 0-4mm from wire electrode, and sharply increases near the ground electrode. The vibrational temperature of N(2) (C) increases with increasing O(2) flows and keeps almost constant in the lengthwise direction under the present experimental conditions. The main physicochemical processes involved are also discussed in this paper.  相似文献   

4.
5.
6.
We report variational transition‐state theory calculations for the OH + O3→ HO2 + O2 reaction based on the recently reported double many‐body expansion potential energy surface for ground‐state HO4 [Chem Phys Lett 2000, 331, 474]. The barrier height of 1.884 kcal mol?1 is comparable to the value of 1.77–2.0 kcal mol?1 suggested by experimental measurements, both much smaller than the value of 2.16–5.11 kcal mol?1 predicted by previous ab initio calculations. The calculated rate constant shows good agreement with available experimental results and a previous theoretical dynamics prediction, thus implying that the previous ab initio calculations will significantly underestimate the rate constant. Variational and tunneling effects are found to be negligible over the temperature range 100–2000 K. The O1? O2 bond is shown to be spectator like during the reactive process, which confirms a previous theoretical dynamics prediction. © 2007 Wiley Periodicals, Inc. 39: 148–153, 2007  相似文献   

7.
《Chemical physics letters》1987,135(6):511-514
Using a ZAB-2F double-focusing mass spectrometer together with an argon-ion laser, the kinetic energy spectra of N2+ photofragments from the photodissociation of N2O+ have been measured at wavelengths 514.5, 496.5, 488.0 and 476.5 nm in the visible region of the spectrum. Energies released in the centre-of-mass frame of reference are given. From the results it is deduced that the states involved in the absorption and dissociation processes ar probably N2O+(B̃2Π) v ⩾ 3 and N2O+ (C̃2Σ+) v ⩾ 0, respectively.  相似文献   

8.
Infrared spectra of various OH+ and H2O+ isotopomers solvated in solid argon are presented. The OH+ and H2O+ cations were produced by co-deposition of H2O/Ar mixture with high-frequency discharged Ar at 4 K. Detailed isotopic substitution studies confirm the assignments of absorptions at 3054.9 and 3040.0 cm(-1) to the antisymmetric and symmetric H-O-H stretching vibrations of H2O+ and 2979.6 cm(-1) to the O-H stretching vibration of OH+. The frequencies of H2O+ solvated in solid argon are red-shifted, whereas the frequency of OH+ is blue-shifted with respect to the gas-phase fundamentals. On the basis of previous gas-phase studies and quantum chemical calculations, the OH+ and H2O+ cations solvated in solid argon may be regarded as the OH+-Ar5 and H2O+-Ar4 complexes isolated in the argon matrix.  相似文献   

9.
10.
OH+ C2H2N←C2H3 + NO→CH3 + NCO反应机理的密度泛函理论研究   总被引:1,自引:1,他引:1  
应用密度泛函理论研究了反应通道(a)C2H3 NO→CH3 NCO和(b)C2H3 NO→OH C2H2N的反应机理.在B3LYP/6-31G(d)水平上优化了反应物、中间体、过滤态、产物的几何构型,通过频率分析确定了11个中间体和10个过渡态.所有的反应物、中间体、过渡态、产物都在CCSD/6-311 G(d,P)水平上进行了单点能较正.并讨论了反应的异构化过程.计算结果表明10是能量最低的中间体,比反应物的能量低308.479kJ/mol;过渡态1/3,2/5,3/4,4/8比反应物的能量高,其中3/4是能量最高的过渡态,比反应物的能量高91.894kJ/mol.通道(a)和(b)的理论放热值分别为111.059和96.619kJ/mol.  相似文献   

11.
Fossil fuel combustion is the second largest anthropogenic source of nitrous oxide (N2O) after agriculture. The estimated global N2O flux from combustion sources, as well as from other sources, still has a large uncertainty. Herein, we characterize automobile sources using N2O isotopomer ratios (nitrogen and oxygen isotope ratios and intramolecular site preference of 15N, SP) to assess their contributions to total global sources and to deconvolute complex production/consumption processes during combustion and subsequent catalytic treatments of exhaust. Car exhaust gases were sampled under running and idling state, and N2O isotopomer ratios were measured by mass spectrometry. The N2O directly emitted from an engine of a vehicle running at constant velocity had almost constant isotopomer ratios (delta15Nbulk = -28.7 +/- 1.2 per thousand, delta18O = 28.6 +/- 3.3 per thousand, and SP = 4.2 +/- 0.8 per thousand) irrespective of the velocity. After passing through catalytic converters, the isotopomer ratios showed an increase which varied with the temperature and the aging of the catalysts. The increase suggests that both production and consumption of N2O occur on the catalyst and that their rates can be comparable. It was noticed that in the idling state, the N2O emitted from a brand new car has higher isotopomer ratios than that from used cars, which indicate that technical improvements in catalytic converters can reduce the N2O from mobile combustion sources. On average, the isotopomeric signatures of N2O finally emitted from automobiles are not sensitive to running/idling states or to aging of the catalysts. Characteristic average isotopomer ratios of N2O from automobile sources are estimated at -4.9 +/- 8.2 per thousand, 43.5 +/- 13.9 per thousand, and 12.2 +/- 9.1 per thousand for delta15Nbulk, delta18O, and SP, respectively.  相似文献   

12.
The reactions between Ca(+)(4(2)S(1/2)) and O(3), O(2), N(2), CO(2) and H(2)O were studied using two techniques: the pulsed laser photo-dissociation at 193 nm of an organo-calcium vapour, followed by time-resolved laser-induced fluorescence spectroscopy of Ca(+) at 393.37 nm (Ca(+)(4(2)P(3/2)-4(2)S(1/2))); and the pulsed laser ablation at 532 nm of a calcite target in a fast flow tube, followed by mass spectrometric detection of Ca(+). The rate coefficient for the reaction with O(3) is essentially independent of temperature, k(189-312 K) = (3.9 +/- 1.2) x 10(-10) cm(3) molecule(-1) s(-1), and is about 35% of the Langevin capture frequency. One reason for this is that there is a lack of correlation between the reactant and product potential energy surfaces for near coplanar collisions. The recombination reactions of Ca(+) with O(2), CO(2) and H(2)O were found to be in the fall-off region over the experimental pressure range (1-80 Torr). The data were fitted by RRKM theory combined with quantum calculations on CaO(2)(+), Ca(+).CO(2) and Ca(+).H(2)O, yielding the following results with He as third body when extrapolated from 10(-3)-10(3) Torr and a temperature range of 100-1500 K. For Ca(+) + O(2): log(10)(k(rec,0)/cm(6) molecule(-2) s(-1)) = -26.16 - 1.113log(10)T- 0.056log(10)(2)T, k(rec,infinity) = 1.4 x 10(-10) cm(3) molecule(-1) s(-1), F(c) = 0.56. For Ca(+) + CO(2): log(10)(k(rec,0)/ cm(6) molecule(-2) s(-1)) = -27.94 + 2.204log(10)T- 1.124log(10)(2)T, k(rec,infinity) = 3.5 x 10(-11) cm(3) molecule(-1) s(-1), F(c) = 0.60. For Ca(+) + H(2)O: log(10)(k(rec,0)/ cm(6) molecule(-2) s(-1)) = -23.88 - 1.823log(10)T- 0.063log(10)(2)T, k(rec,infinity) = 7.3 x 10(-11)exp(830 J mol(-1)/RT) cm(3) molecule(-1) s(-1), F(c) = 0.50 (F(c) is the broadening factor). A classical trajectory analysis of the Ca(+) + CO(2) reaction is then used to investigate the small high pressure limiting rate coefficient, which is significantly below the Langevin capture frequency. Finally, the implications of these results for calcium chemistry in the mesosphere are discussed.  相似文献   

13.
A quantum chemical investigation on the reaction mechanism of CH3O2 with OH has been performed. Based on B3LYP and QCISD(T) calculations, seven possible singlet pathways and seven possible triplet pathways have been found. On the singlet potential energy surface (PES), the most favorable channel starts with a barrierless addition of O atom to CH3O2 leading to CH3OOOH and then the O? O bond dissociates to give out CH3O + HO2. On the triplet PES, the calculations indicate that the dominant products should be 3CH2O2 + H2O with an energy barrier of 29.95 kJ/mol. The results obtained in this work enrich the theoretical information of the title reaction and provide guidance for analogous atmospheric chemistry reactions. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
The dynamics of the title five-atom atmospheric reaction is studied by the quasiclassical trajectory method for vibrational states of OH over the range 2 < or = v < or = 9 and initial vibrational energies of O3 between 9 and 21 kcal mol-1 using a previously reported double many-body expansion potential energy surface for HO4(2A). The results show that the reaction is controlled by both capture- and barrier-type mechanisms, with the rate constants depending strongly on the reactants' internal energy content. Also suggested from the magnitude of the calculated rate coefficients is that the title processes may not be ignorable when studying the stratospheric ozone budget.  相似文献   

15.
The gas-phase reaction of the NO3 radical with NO2 was investigated, using a flash photolysis-visible absorption technique, over the total pressure range 25–400 Torr of nitrogen or oxygen diluent at 298 ± 2 K. The absolute rate constants determined (in units of 10?13 cm3 molecule?1 s?1) at 25, 100, and 400 Torr total pressure were, respectively, (4.0 ± 0.5), (7.0 ± 0.7), and (10 ± 2) for M = N2 and (4.5 ± 0.5), (8.0 ± 0.4), and (8.8 ± 2.0) for M = O2. These data show that the third-body efficiencies of N2 and O2 are identical, within the error limits, and that previous evaluations for M = N2 are applicable to the atmosphere. In addition, upper limits were determined for the rate constants of the reactions of the NO3 radical with methanol, ethanol, and propan-2-ol of ?6 × 10?16, ?9 × 10?16, and ?2.3 × 10?15 cm3 molecule?1 s?1, respectively, at 298 ± 2 K.  相似文献   

16.
The mechanism for the O + CH2OH reaction was investigated by various ab initio quantum chemistry methods. For the chemical activation mechanism, that is, the addition/elimination path, the couple-cluster methods including CCSD and CCSD(T) were employed with the cc-pVXZ (X = D, T, Q, 5) basis sets. For the abstraction channels, multireference methods including CASSCF, CASPT2, and MRCISD were used with the cc-pVDZ and cc-pVTZ basis sets. It has been shown that the production of H + HCOOH is the major channel in the chemical activation mechanism. The minor channels include HCO + H2O and OH + CH2O. The hydrogen abstraction by an O atom from the CH2OH radical produces either OH + CH2O or OH + HCOH. Moreover, the two abstraction reactions are essentially barrierless processes. The rate constants for the association of O with CH2OH have been calculated using the flexible transition state theory. A weak negative temperature dependence of the rate constants is found in the range 250-1000 K. Furthermore, it is estimated that the abstraction processes also play an important role in the O + CH2OH reaction. Additionally, the falloff behavior for the OCH2OH --> H + HCOOH reaction has been investigated. The present theoretical results are compared to the experimental measurements to understand the mechanism and kinetic behavior of the O + CH2OH reaction and the unimolecular reaction of the OCH2OH radical.  相似文献   

17.
The reactions of N2O with NO and OH radicals have been studied using ab initio molecular orbital theory. The energetics and molecular parameters, calculated by the modified Gaussian-2 method (G2M), have been used to compute the reaction rate constants on the basis of the TST and RRKM theories. The reaction N2O + NO → N2 + NO2 (1) was found to proceed by direct oxygen abstraction and to have a barrier of 47 kcal/mol. The theoretical rate constant, k1 = 8.74 × 10−19 × T2.23 exp (−23,292/T) cm3 molecule−1 s−1, is in close agreement with earlier estimates. The reaction of N2O with OH at low temperatures and atmospheric pressure is slow and dominated by association, resulting in the HONNO intermediate. The calculated rate constant for 300 K ≤ T ≤ 500 K is lower by a few orders than the upper limits previously reported in the literature. At temperatures higher than 1000 K, the N2O + OH reaction is dominated by the N2 + O2H channel, while the HNO + NO channel is slower by 2–3 orders of magnitude. The calculated rate constants at the temperature range of 1000–5000 K for N2O + OH → N2 + O2H (2A) and N2O + OH → HNO + NO (2B) are fitted by the following expressions: in units of cm3 molecule −1s−1. Both N2O + NO and N2O + OH reactions are confirmed to enhance, albeit inefficiently, the N2O decomposition by reducing its activation energy. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
A series of reactions involving Fe(+) ions were studied by the pulsed laser ablation of an iron target, with detection of ions by quadrupole mass spectrometry at the downstream end of a fast flow tube. The reactions of Fe(+) with N(2)O, N(2) and O(2) were studied in order to benchmark this new technique. Extending measurements of the rate coefficient for Fe(+) + N(2)O from 773 K to 185 K shows that the reaction exhibits marked non-Arrhenius behaviour, which appears to be explained by excitation of the N(2)O bending vibrational modes. The recombination of Fe(+) with CO(2) and H(2)O in He was then studied over a range of pressure and temperature. The data were fitted by RRKM theory combined with ab initio quantum calculations on Fe(+).CO(2) and Fe(+).H(2)O, yielding the following results (120-400 K and 0-10(3) Torr). For Fe(+) + CO(2): k(rec,0) = 1.0 x 10(-29) (T/300 K)(-2.31) cm(6) molecule(-2) s(-1); k(rec,infinity) = 8.1 x 10(-10) cm(3) molecule(-1) s(-1). For Fe(+) + H(2)O: k(rec,0) = 5.3 x 10(-29) (T/300 K)(-2.02) cm(6) molecule(-2) s(-1); k(rec,infinity) = 2.1 x 10(-9) (T/300 K)(-0.41) cm(3) molecule(-1) s(-1). The uncertainty in these rate coefficients is determined using a Monte Carlo procedure. A series of exothermic ligand-switching reactions were also studied at 294 K: k(Fe(+).N(2) + O(2)) = (3.17 +/- 0.41) x 10(-10), k(Fe(+).CO(2) + O(2)) = (2.16 +/- 0.35) x 10(-10), k(Fe(+).N(2) + H(2)O) = (1.25 +/- 0.14) x 10(-9) and k(Fe(+).O(2) + H(2)O) = (8.79 +/- 1.30) x 10(-10) cm(3) molecule(-1) s(-1), which are all between 36 and 52% of their theoretical upper limits calculated from long-range capture theory. Finally, the role of these reactions in the chemistry of meteor-ablated iron in the upper atmosphere is discussed. The removal rates of Fe(+) by N(2), O(2), CO(2) and H(2)O at 90 km altitude are approximately 0.1, 0.07, 3 x 10(-4) and 1 x 10(-6) s(-1), respectively. The initially formed Fe(+).N(2) and Fe(+).O(2) are converted into the H(2)O complex at approximately 0.05 s(-1). Fe(+).H(2)O should therefore be the most abundant single-ligand Fe(+) complex in the mesosphere below 90 km.  相似文献   

19.
The reflected shock tube technique with multipass absorption spectrometric detection of OH-radicals at 308 nm, corresponding to a total path length of approximately 2.8 m, has been used to study the reaction CH3 + O2 CH2O + OH. Experiments were performed between 1303 and 2272 K, using ppm quantities of CH3I (methyl source) and 5-10% O2, diluted with Kr as the bath gas at test pressures less than 1 atm. We have also reanalyzed our earlier ARAS measurements for the atomic channel (CH3 + O2 --> CH3O + O) and have compared both these results with other earlier studies to derive a rate expression of the Arrhenius form. The derived expressions, in units of cm3 molecule(-1) s(-1), are k = 3.11 x 10(-13) exp(-4953 K/T) over the T-range 1237-2430 K, for the OH-channel, and k = 1.253 x 10(-11) exp(-14241 K/T) over the T-range 1250-2430 K, for the O-atom channel. Since CH2O is a major product in both reactions, reliable rates for the reaction CH2O + O2 --> HCO + HO2 could be derived from [OH]t and [O]t experiments over the T-range 1587-2109 K. The combined linear least-squares fit result, k = 1.34 x 10(-8) exp(-26883 K/T) cm3 molecule(-1) s(-1), and a recent VTST calculation clearly overlap within the uncertainties in both studies. Finally, a high sensitivity for the reaction OH + O2 --> HO2 + O was noted at high temperature in the O-atom data set simulations. The values for this obtained by fitting the O-atom data sets at later times (approximately 1.2 ms) again follow the Arrhenius form, k = 2.56 x 10(-10) exp(-24145 K/T) cm3 molecule(-1) s(-1), over the T-range, 1950-2100 K.  相似文献   

20.
Ground-state rotational energy distributions of N2 molecules produced in pure and He-seeded supersonic expansions have been determined by measurements of the N+2 first negative band rotational line intensities produced by 800 eV electron impact on cooled pure and He-seeded N2 supersonic beams. Sufficient spectral resolution was employed to resolve completely both P and R branches of the first negative bands. Rotational state distributions were obtained to much higher values of J than in previous investigations. The data show that at 800 eV, the electric dipole selection rule, |ΔJ| = 1, is consistent with the observed N+2 emission bands and that the rotational energy distributions produced in the cooled, supersonic beam are non-Boltzmann with a large population in the first few rotational states followed by a long, high-energy fail to quite high J values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号