首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For polycrystalline metals undergoing creep at high temperatures the nucleation, growth and coalescence of grain boundary cavities is investigated, with main focus on the influence of grain boundary sliding. Both the local stress state and the average rate of opening of a cavitating facet can be rather strongly affected by sliding on the grain boundaries emanating from the edges of this facet. A number of numerical solutions of axisymmetric model problems are used to study the combined influence of sliding and cavitation. The time to creep rupture by cavity coalescence is significantly reduced by grain boundary sliding, as is seen by comparison with analyses that disregard sliding. The numerical results are compared with predictions of a set of constitutive relations for creep in polycrystals with grain boundary cavitation.  相似文献   

2.
A two-dimensional nonlocal continuum model is proposed in this paper for creep damage in polycrystalline materials. Starting from previous micromechanical modeling, a heuristic homogenization approach is adopted to derive a theory for the macroscopic response. The model accounts for the main damage mechanisms (grain boundary sliding, nucleation, growth and coalescence of cavities along the grain boundaries) responsible for the creep fracture process. The resulting constitutive law takes into account the nonlocalities expressed through the gradients of the stresses and the damage variables.  相似文献   

3.
Theoretical models are suggested which describe the effects of intergrain sliding on crack growth in nanocrystalline metals and ceramics. Within the models, stress concentration near cracks initiates intergrain sliding which is non-accommodated at low temperatures and effectively accommodated at intermediate temperatures. The first model is focused on the non-accommodated intergrain sliding which leads to generation of dislocations at triple junctions of grain boundaries. These dislocations cause partial stress relaxation in the vicinities of crack tips and thereby hamper crack growth. It is shown that the non-accommodated intergrain sliding increases fracture toughness by 10–30% in nanocrystalline Al, Ni and 3C–SiC. The second model deals with the case of intermediate temperatures. Within this model, intergrain sliding is effectively accommodated by diffusion-controlled climb of grain boundary dislocations. The accommodated intergrain sliding in nanocrystalline materials results in crack blunting which, in its turn, leads to an increase (by a factor ranging from 1.1 to around 3, depending on temperature) of fracture toughness.  相似文献   

4.
含裂纹体蠕变断裂理论及其应用研究   总被引:4,自引:2,他引:2  
杨挺青 《力学进展》1999,29(2):178-186
评介了蠕变断裂力学研究概况.着重论述含裂纹材料与结构的蠕变断裂、蠕变损伤、蠕变疲劳裂纹扩展和寿命预估等方面研究的近期进展.从中介绍蠕变断裂力学的研究途径、方法及其广阔的工程应用前景   相似文献   

5.
The cavitation problem of a composite ball under a uniform temperature is investigated, and the ball is composed of two elastic solid materials. The nonlinear mathematical model of the problem is established with the finite logarithmic strain measure for a large geometric deformation and by the Hooke law for elastic materials. The analytic solutions in a parametric form are derived for the thermal dilatation of the composite ball with a large elastic deformation. Solution curves are given to describe the variations of the critical temperature in the cavitation with the geometric and material parameters. The bifurcation curve is also given to reveal the cavity growth after void nucleation. The numerical results for a computational example indicate that the radius of the cavity will rapidly grow above the critical temperature, and the loop stress will become infinite when void nucleation. This means that the materials near the cavity will produce a plastic deformation leading to local failure and fracture if the material of the internal ball is elastoplastic. In addition, the cavitation of the composite ball appears at a low temperature if the elastic property of the material of the internal ball is nearly uncompressible.  相似文献   

6.
The effect of high temperature hydrogen attack on creep crack growth rates in steels is studied by modeling the interaction between creep deformation and gaseous pressures generated by hydrogen and methane. The equilibrium methane pressure as a function of hydrogen pressure, temperature and carbide types for carbon steels and Cr–Mo steels is calculated. This gaseous driving force is incorporated into a micromechanics model for void growth along grain boundaries of a creeping solid. Growth and coalescence of voids along grain boundaries is modeled by a microporous strip of cell elements, referred to as the fracture process zone. The cell elements are governed by a nonlinear viscous constitutive relation for a voided material. Two rate sensitivities as well as two types of grain boundaries are considered in this computational study. Simulations of creep crack growth accelerated by gaseous pressures are performed under conditions of small-scale and extensive creep. The computed crack growth rates at elevated temperatures are able to reproduce the trends of experimental results.  相似文献   

7.
8.
Recent experiments have evidenced the existence of a ductile fracture mode at the nanometer scale in Aluminosilicate glass. The present study is designed to check whether such a ductile mode is inherent to the amorphous nature of glass. Therefore, the slow crack advance is observed in real time via an Atomic Force Microscope in a minimal glass, amorphous Silica, under stress corrosion. In this case, the Crack propagation proceeds by the nucleation, growth and coalescence of damage cavities as in the Aluminosilicate glass, but the cavity size is significantly larger. We focus here on the kinematics of crack propagation by looking at the spatio-temporal evolution of both the tip of the main crack and the cavity ahead. It is shown that the velocity of the main crack tip is significantly lower than the one of the cavity edge toward the main crack tip, like in metallic alloys. Moreover, the velocities of the different fronts (main crack, frontward and backward cavity tips) at these nanometric scales is one order of magnitude smaller than the crack tip velocity at the continuum scale. This has important consequences for the modelling of stress corrosion, especially at ultra-slow crack propagation.  相似文献   

9.
The brittle versus ductile transition for conventional metals is dictated by the competition between dislocation emission and cleavage. For nanocrystalline metals with grain size below 25 nm, however, dislocation activities are suppressed and the classic theory fails to apply. In this paper, one of the competing mechanisms that control the brittle versus ductile transition of nanocrystalline metals is found to be the grain boundary dominated creep deformation versus the grain boundary decohesion. A model is proposed to quantify the crack propagation in nanocrystalline metals. The effects of material properties, initial configuration and applied loads on the property of crack propagation are addressed. It is concluded that either the increases in the initial crack length, the applied load and the grain boundary damage, or the deterrence in creep deformation, accelerate the crack propagation, and vice versa.  相似文献   

10.
Fracture of nanocrystalline metals with extremely small grain size is simulated in this paper by structural evolution. Two-dimensional scheme is formulated to study the competition between crack growth and blunting in nanocrystalline samples with edge cracks. The scheme couples the creep deformation induced by grain boundary (GB) mechanisms and the intergranular crack growth. The effects of material properties, initial configurations and applied loads are explored. Either the enhancement in diffusion mobility, or the deterrence in the grain boundary damage, would blunt the crack and decelerate its growth, and vice versa. The simulations agree with the analytical predictions as modified from that of Yang and Yang [2008. Brittle versus ductile transition of nanocrystalline metal. Int. J. Solids Struct. 45, 3897-3907]. Upon the suppression of dislocation activities, it is validated that the brittle versus ductile transition of nanocrystals is controlled by the development of grain boundary-dominated creep versus grain boundary decohesion. Further simulations found that either decreasing the grain sizes or increasing the dispersion of grain sizes would blunt the growing cracks.  相似文献   

11.
魏悦广 《力学学报》2000,32(3):291-299
裂纹在韧性材料中扩展时,将们随着微孔洞的萌生和生长,孔洞的萌生和深化将直接影响着材料的总体断裂韧性和强度,以往的研究主要集中在将裂纹的扩展刻划为微孔洞的萌生、生长和汇合这样一个过程。从传统的断裂过程区模型出发研究微孔洞的萌生和生长对材料总体断裂韧性的影响,通过采用Gurson模型,建立塑性增量本构关系,然后针对定常扩展情况直接进行分析,孔洞对材料断裂韧性的影响由本构关系刻划,而在孔洞汇合模型中,上  相似文献   

12.
The elastic-viscoplastic constitutive equations of Bodner-Partom were applied to modeling creep damage in a high temperature Ni-alloy, B1900 + Hf. Both tertiary creep in bulk materials and creep crack growth in flawed materials were considered. In the latter case, the energy rate line integral C* was used for characterizing the crack driving force, and the rate of crack extension was computed using a local damage formulation that assumed fracture was controlled by cavitation occurring within the crack-tip process zone. The results of this investigation were used to assess the evolution equation for isotropic damage utilized in the Bodner-Partom constitutive equations.  相似文献   

13.
脆性岩石蠕变裂纹成核宏细观力学机理研究   总被引:1,自引:0,他引:1  
脆性岩石内部细观裂纹扩展、贯通及成核影响下的脆性蠕变行为, 对深部地下工程围岩微震及岩爆事件评价有着重要意义. 然而, 目前能够解释裂纹成核损伤突变影响下, 脆性岩石完整蠕变宏细观力学机理模型的研究很少. 本文基于脆性岩石亚临界裂纹扩展模型、裂纹-应变-声发射事件相关的损伤模型及裂纹成核损伤时间演化路径函数, 提出了一种脆性岩石裂纹成核损伤突变影响下的蠕变宏细观力学模型. 裂纹成核损伤时间演化路径函数通过岩石内部裂纹成核损伤突变大小$\Delta D_{CN}$及相邻裂纹成核损伤时间差$\Delta t$进行定义, 该函数可以结合岩石声发射监测试验数据定义的岩石损伤数据确定. 通过与试验结果对比分析验证模型的合理性. 并讨论了裂纹成核损伤大小、相邻裂纹成核损伤时间间隔、及裂纹成核数量对脆性岩蠕变裂纹长度、裂纹速率、轴向应变及应变率的影响. 该结果对于更加合理、经济、高效的深部地下工程施工及设计提供了一定的理论支持.   相似文献   

14.
低熔点金属的层裂是目前延性金属动态断裂的基础科学问题之一。采用非平衡态分子动力学方法模拟了冲击压力在13.5~61.0 GPa下单晶和纳米多晶锡的经典层裂和微层裂过程。研究结果表明:在加载阶段,冲击速度不影响单晶模型中的波形演化规律,但影响纳米多晶模型中的波形演化规律,其中经典层裂中晶界滑移是影响应力波前沿宽度的重要因素;在单晶模型中,经典层裂和微层裂中孔洞成核位置位于高势能处;在纳米多晶模型中,经典层裂中的孔洞多在晶界(含三晶界交界处)处成核,并沿晶定向长大,产生沿晶断裂,而微层裂中孔洞在晶界和晶粒内部成核,导致沿晶断裂、晶内断裂和穿晶断裂;孔洞体积分数呈现指数增长,相同冲击速度下单晶和纳米多晶Sn孔洞体积分数变化规律一致;经典层裂中孔洞体积分数曲线的两个转折点分别表示孔洞成核与长大的过渡和材料从损伤到断裂的灾变性转变。  相似文献   

15.
李喜德  黄聪  施惠基 《力学学报》2002,34(4):652-656
基于裂纹和孔洞的小尺寸特征,提出了微小缺口/孔洞的激光衍射无损探测技术,给出了解析表达式.通过这一技术,对单向拉伸试件中所含单边缺口和中心孔洞在外载作用下的演化过程进行了实时原位检测,获得了缺口/孔洞孔径随载荷的变化曲线及模拟裂纹时裂纹的张开位移、裂纹开裂长度及应力强度因子等一系列断裂参数.  相似文献   

16.
A phenomenological void–crack nucleation model for ductile metals with secondphases is described which is motivated from fracture mechanics and microscale physicalobservations. The void–crack nucleation model is a function of the fracture toughness of theaggregate material, length scale parameter (taken to be the average size of the second phaseparticles in the examples shown in this writing) , the volume fraction of the second phase, strainlevel, and stress state. These parameters are varied to explore their effects upon the nucleationand damage rates. Examples of correlating the void–crack nucleation model to tension data in theliterature illustrate the utility of the model for several ductile metals. Furthermore, compression,tension, and torsion experiments on a cast Al–Si–Mg alloy were conducted to determinevoid–crack nucleation rates under different loading conditions. The nucleation model was thencorrelated to the cast Al–Si–Mg data as well.  相似文献   

17.
Summary  A micromechanical model is developed to describe effects such as combined power-law creep and diffusion, grain boundary sliding and cavitation in polycrystals. Several aspects of creep-constrained cavitation are taken into account such as diffusion in a cage of creeping matrix material and cavitating facets in a cage of creeping grains. Grain boundary sliding is modelled by distributed micro-shearcracks. It is shown that the different physical mechanisms and their interactions are functions of a well-defined material parameter λ, which can be related to the material length scale L introduced by Rice. Received 18 January 2000; accepted for publication 17 May 2000  相似文献   

18.
岩石蠕变断裂特性的试验研究   总被引:5,自引:1,他引:5  
陈有亮 《力学学报》2003,35(4):480-484
以一类红砂岩为例对蠕变条件下岩石裂纹的起裂和扩展的机理、准则进行了试验研究和理论分析.试验结果表明,岩石裂纹常常在初始应力强度因子KI小于断裂韧度KIC的情况下,经过一段时间的持续蠕变变形产生裂纹起裂和扩展.当然,初始应力强度因子KI小于断裂韧度KIC是有限度的,KI不得小于另一固定值KIC2,KIC2表征了岩石在蠕变条件下抵抗裂纹起裂和扩展的能力,而且其值小于KIC,可称之为蠕变断裂韧度.在岩石工程的设计和计算中,KIC2是一个重要参数.  相似文献   

19.
如何对蠕变裂纹扩展寿命进行准确预测和评价是高温结构完整性评定、寿命设计和运行维护中需要解决的核心问题.基于宏观单参数C?的蠕变断裂行为的评价方法,未有效纳入裂尖拘束效应的影响,因而其评价结果过于保守或非保守.目前国内外还未建立起有效纳入裂尖拘束效应的高温结构蠕变寿命评价的理论体系和技术方法,还没有纳入蠕变拘束效应的高温结构完整性评定规范.本文综述了作者近年来在高温蠕变断裂拘束效应方面的研究工作.主要包括:裂尖拘束对材料蠕变裂纹扩展行为的影响及机理;蠕变裂尖场和拘束参数R的定义和影响因素;载荷无关的蠕变拘束参数R? 的提出及其应用基础;承压管道表面裂纹的拘束参数R? 解及纳入裂尖拘束的蠕变寿命评价方法;试样与管道轴向裂纹蠕变裂尖拘束的关联;基于裂尖等效蠕变应变的面内与面外蠕变裂尖拘束的统一表征参数Ac的研究;材料拘束相关的蠕变裂纹扩展速率的建立;宽范围C? 区蠕变裂纹扩展速率及其拘束效应的数值预测;材料拘束对焊接接头蠕变裂纹扩展行为的影响及机理等.这些研究为建立纳入裂尖拘束效应的高温部件的蠕变裂纹扩展寿命评价方法奠定了理论和技术基础.论文对后续拟开展的工作也进行了展望.  相似文献   

20.
This paper deals with a finite element algorithm for the creep crack growth process in a viscoelastic medium. The main developments focus on the coupling between the M-integral and an incremental formulation for the viscoelastic behavior. In this context, mixed mode configurations are simulated for orthotropic symmetries. An algorithm uncoupling viscoelastic incremental formulation and the fracture procedure is resolved with finite element software. The global approach is validated in terms of the evolution of energy release rate versus time and the advance of cracks. Numerical simulations are based on a Constant Tension Shear model. The insensitivity of the M-integral to the integration domain is shown from creep crack growth simulations for mixed mode configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号