首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding constants of various alkali metal cations with water-soluble p-sulfonatocalix[8]arene (Calix-S8) were determined spectrophotometrically by using the inclusion equilibrium of thionine (Th) dye as a chemical indicator. Depending on the kind of alkali metal cations, the inclusion constants of Calix-S8 for Th decrease steeply with an increase in salt concentrations. Alkali metal cations compete with the organic guest Th in the Calix-S8 inclusion. Based on a competitive binding experiment, the binding constants of alkali metal cations with Calix-S8 were evaluated to be 17, 60, and 11 dm6 mol?2 for Na+, K+, and Cs+, respectively. We have demonstrated an absorption-based method of evaluating the binding constants of spectroscopically inert metal cations with Calix-S8 and shown the effects of salts on the molecular recognition of Calix-S8.  相似文献   

2.
The redox reaction between the 12-tungstocobaltate(III) ion and carbohydrazide is first order with respect to both the oxidant and the substrate. The observed pseudo first-order rate constant, kobs, is retarded by increasing the concentrations of H+ and alkali metal ion (Li+, Na+ and K+). There is a linear correlation between the kobs and the concentrations of carbohydrazide and H+ ion, but the plots of kobs against the concentrations of the alkali metal ions is non-linear. However, the same data is applicable to the Davies equation for the effect of the ionic strength on the kobs.  相似文献   

3.
The alkali metal ion transfers facilitated by a novel calix[4]arene derivative (OPEC) across the water/1,2-dichloroethane (1,2-DCE) micro-interface supported at the tip of a micropipette were presented. The well-defined voltammetric behaviours except Cs+ was obtained by cyclic voltammetry and differential pulse voltammetry. The bulk concentration of metal ions was much higher than that of OPEC in the performed measurements. The diffusion coefficient of OPEC in the 1,2-DCE phase was calculated as 5.18 ± 0.70 × 10? 6 cm2 s? 1. On the basis of the changes of the half-wave transfer potentials, the logarithms of the association constants having 1:1 ionophore–ion complex stoichiometry for Li+, Na+, K+ and Rb+ in 1,2-DCE were determined as 4.80, 4.62, 4.98 and 5.32, respectively. The facilitated ion transfers were also evaluated by the Randles equivalent circuit used for ac-impedance data analysis.  相似文献   

4.
Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS) are used to evaluate the alkali metal ion binding selectivities of a series of calixarenes. Each calixarene of interest is mixed with one or more alkali metal salts (1:100 ratio of calixarene to metal), either in the ESI solution or on the MALDI probe surface, and the relative binding selectivities are directly determined from the intensities of the calixarene/metal complexes in the mass spectra. For t-butylcalix[4]arene-tetraacetic acid tetraethyl ester (calixarene 1), complexation of Na+ is favored over complexation of K+, in agreement with prior solution results obtained by conventional methods. For the three calixarenes that do not have t-butyl groups on the upper rims, the calixarenes preferentially bind K+ over Na+, thus demonstrating that size selective complexation can be probed with both the ESI and MALDI methods. Collision-activated dissociation results indicate that the phenyl oxygens, but not necessarily the ethoxy ethyl oxygens of the lower rims, are the primary binding sites for the alkali metal ions.  相似文献   

5.
6.
The characteristics properties of xanthone phosphorescence and of 2-pentanone photolysis in alkali metal cation-exchanged zeolites have been investigated to clarify the effect of the micro-environment of host-adsorbents on the photophysical and photochemical properties of guest-molecules in restricted void spaces. The enhancement of the phosphorescence yields of xanthone included in zeolites is observed by changing the exchangeablealkali metal cation from Li+ to Cs+. Simultaneously, the phosphorescence lifetimes were observed to continuously shorten by changing the cation from Li+ to Cs+. These results suggest that the external heavy-atom effect deriving from the alkali metal cations on the singlet-triplet transitions of xanthone molecules stabilized on alkali metal cations in the order of Li+, Na+, K+, Rb+, and Cs+. The yields for the photolysis of 2-pentanone included in zeolites increase with changing the alkali metal cation from Li+ to Cs+. IR investigations of the adsorption state of 2-pentanone indicate that strength of the interaction between the alkali metal cations and 2-pentanones decreases by changing the cation from Li+ to Cs+, which results in a longer lifetime of 2-pentanone. The selectivity of propylene formation is dramatically increased by changing the cation from Li+ to Cs+. The enhanced formation of propylene is asociated with the hydrogen absorption from propyl radicals by lattice oxygen, their basicity increasing by changing the cation from Li+ to Cs+. Thus, these changes in the zeolite cavities modified by exchanging cations caused significant effects not only on the excited state but also on the following chemical reactions of ketones.  相似文献   

7.
Chiral α,ω-diesters react under high-pressure conditions (10 kbar) with α,ω-diamines to give chiral cyclic tetraamides of C2-symmetry. The complexation properties of tetraamides towards alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) were estimated on the basis of ESI-MS spectra.  相似文献   

8.
The analysis of the orbital interaction between an alkali metal ion and the surrounding solvent molecules is performed for aqueous solutions of Li+, Na+, and K+, by means of the ab initio MO method with the aid of the quantum mechanical (QM)/molecular mechanics (MM) method. A total of 171 water molecules are included for each system. The effect of Li+ orbitals reaches as far as 6 Å 7 Å for Na+; and 9 Å for K+. This effect is caused by the orbital interactions between the valence orbitals of an alkali metal ion and of the surrounding water molecules. The electrostatic interaction and the orbital interaction must not be neglected. The difference in the effect between the alkali metal ions originates from the difference in the valence orbital extensions of the alkali metal ions.  相似文献   

9.
Five new chromogenic azocalix[4]arenemonoquinones have been synthesized, characterized and examined for their interaction with alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) by UV-visible spectroscopic and cyclic voltammetric techniques. It has been determined that 4a selectively exhibits a significant bathochromic shift in its UV-visible spectrum on interaction with potassium ion in comparison to its treatment with other alkali metal cations. The binding stoichiometry of 4a and potassium ion was established to be 1:1 with an association constant of 3.27 × 104 M?1. Cyclic voltammetric experiments in 4:1 dichloromethane-acetonitrile also revealed a significant anodic shift (ΔE (1/1′) = 115 mV) of the original redox waves of 4a on interaction with potassium ion.  相似文献   

10.
The host–guest complexation reactions between 5,11,17,23‐tetra‐tert‐butyl‐25,27‐diethoxycarbonylmethoxy‐26,28‐dimethoxy calix[4]arene (BDDC4) and alkali and alkaline‐earth metal ions were investigated by facilitated ion transfer processes across water/1,2‐dichloroethane microinterface by using steady‐state cyclic voltammetry and differential pulse voltammetry. The obtained facilitated transfers for Li+, Na+, K+, Rb+ and Ca2+ were evaluated under the different experimental conditions, at the excess concentrations of metal ions with respect to BDDC4 and vice versa. The association constants having 1 : 1 stoichiometry for Li+, Na+, K+ and Rb+ in 1,2‐DCE were determined. Also, we demonstrated that BDDC4 can play an important role for the development of highly selective chemical sensor for Ca2+ among alkaline‐metal ions in the concentration range of 0.1–1.0 mM in aqueous solution.  相似文献   

11.
The facilitated transfer of alkali metal ions (Na+, K+, Rb+, and Cs+) by 25,26,27,28‐tetraethoxycarbonylmethoxy‐thiacalix[4]arene across the water/1,2‐dichloroethane interface was investigated by cyclic voltammetry. The dependence of the half‐wave transfer potential on the metal and ligand concentrations was used to formulate the stoichiometric ratio and to evaluate the association constants of the complexes formed between ionophore and metal ions. While the facilitated transfer of Li+ ion was not observed across the water/1,2‐dichloroethane interface, the facilitated transfers were observed by formation of 1 : 1 (metal:ionophore) complex for Na+, K+, and Rb+ ions except for Cs+ ion. In the case of Cs+ a 1 : 2 (metal:ionophore) complex was obtained from its special electrochemical response to the variation of ligand concentrations in the organic phase. The logarithms of the complex association constants, for facilitated transfer of Na+, K+, Rb+, and Cs+, were estimated as 6.52, 7.75, 7.91 (log β1°), and 8.36 (log β2°), respectively.  相似文献   

12.
Electrospray ionization (ESI) mass spectrometry (MS) has been used in conjunction with computer modeling to investigate binding tendencies of alkali metal cations to low molecular weight solvents. Intensities of peaks in ESI mass spectra corresponding to solvent-bound alkali metal cations were found to decrease with increasing ionic radii (Li+ > Na+ > K+ > Cs+) in either dimethylacetamide (DMAc) or dimethylformamide (DMF). When a lithium or sodium salt was added to an equimolar mixture of DMF, DMAc, and dimethylpropionamide (DMP), the intensities of gas-phase [solvent + alkali cation]+ peaks observed in ESI mass spectra decreased in the order DMP > DMAc ≫ DMF. A parallel ranking was obtained for alkali metal cation affinities in ESI-MS/MS experiments employing the kinetic method. These trends have been attributed to a combination of at least three factors. An inductive effect exhibited by the alkyl group adjacent to the carbonyl function on each solvent contributes through-bond electron donation to stabilize the alkali metal cation attached to the carbonyl oxygen. The shift in the partial negative charge at the oxygen binding site with increasing n-alkyl chain length (evaluated via computer modeling), however, cannot fully account for the mass spectrometric data. The increasing polarizability and the augmented ability to dissipate thermal energy with increasing size of the solvent molecule are postulated to act in conjunction with the inductive effect. Further evidence of these contributions to solvent–cation binding in ESI-MS is given by the relative intensities of [solvent + Li]+ peaks in mixtures containing equimolar quantities of alcohols, indicating preferential solvation of Li+ in the order n-propanol > ethanol > methanol. These experiments suggest a combined role of polarizability, the inductive effect, and solvent molecule size in determining relative intensities of solvated cation peaks in ESI mass spectra of equimolar mixtures of homologous solvents.  相似文献   

13.
The selectivity and efficiency of competitive liquid-liquid extraction of alkali metal cations into organic solvents containingsym-(octyl)dibenzo-16-crown-5-oxyacetic acid (2) andsym-bis[4(5)-tert-butylbenzo]-16-crown-5-oxyacetic acid (3) have been determined. Solvents examined include: dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, 1,1,1-trichloroethane, benzene, toluene,p-xylene, chlorobenzene, 1,2-dichlorobenzene, and 1,2,3,4-tetrahydronaphthalene. The Na+/K+ and Na+/Li+ extraction ratios are highest in chloroform. The extraction selectivity is found to correlate with the diluent parameter (DP) of the organic solvent.This paper is dedicated to the memory of the late Dr C. J. Pedersen.  相似文献   

14.
Several metal (Na+, Ca2+) or ammonium (n-Bu4N+) derivatives of alginic acid, an abundant bio-polymer obtained from the cell walls of brown algae, were synthesized. Their potential to act as organocatalysts to catalyze the 1,2-addition of various silyl derivatives to carbonyl compounds was evaluated for the first time. Ammonium alginate 1h is able to promote the reaction in modest to good isolated yields (up to 98%) affording access to a large range of substrates (β-cyano alcohols or ester, β-substituted methylacrylate or acrylonitrile, and cyanohydrin) by using only 5 mol % of catalyst.  相似文献   

15.
Electrosubstitution of alkali cations in mixed-alkali glass containing both Na2O and K2O for other monovalent metal cations (M+=Li+, Ag+, and Cs+) was investigated using a solid-state electrochemical method. The fundamental electrolysis system consists of anode/M+-conducting microelectrode/glass/Na-β″-Al2O3/cathode, where M+ is substituted for the alkali metal ions in the glass under an applied electric field. Li+ ions attacked only Na+ sites, and Ag+ ions replaced Na+ sites more readily than K+. In contrast, Cs+ ions simultaneously substituted for both Na+ and K+ sites. The substitution behavior appears to depend on the difference in ionic conductivity between K+ and Na+ and the radius of the dopant. This mechanism was discussed qualitatively.  相似文献   

16.
A variety of methods have been used in the synthesis of amino-substituted (η6-arene)(η5-cyclopentadienyl) iron(II) complexes. Conventional thermal ligand exchange of 2-fluoroaniline with ferrocene in the presence of Devarda’s alloy gave an Ullmann coupling product, 2,2′ diaminobiphenyl complex, whereas omitting metal powder gave the 2-fluorobenzene complex. Double SNAr substitution of the 1,2-dichlorobenzene complex by dimethylamine is reported. Microwave-assisted SNAr reactions have led to the development of a one-pot synthesis of N-arylaminoacids. Acetylation of amino-complexes is described and the product anilide complexes used in SNAr displacements to form aminoanilide analogues. Hexamethyldisilazane was found to be an efficient aminating agent in the presence of alcohols or phenols in DMSO, leading to the synthesis of the (η6-1,2-diaminobenzene)(η5-Cp) iron(II) complex, the first (ArFeCp)+ species reported containing two primary amino groups.  相似文献   

17.
Salts of the violurate anion with the alkali and alkaline earth metals, the d10 ions Zn2+ and Cd2+, Mn2+, Pb2+, Ag+ and the lanthanides show a variety of spectacular colours in the solid state. The metal ions have no intrinsic absorption in the visible region (apart from the weak spin-forbidden bands of Mn2+) and do not normally show charge-transfer absorption. The colours are ascribed to the n→π* transition of the violurate anion. As confirmation of this assignment the visible absorption of the K+ salt is shown to be polarized perpendicular to the plane of the violurate anion. Low temperature (∼20 K) absorption spectra of the Na+, K+ and Rb+ salts are reported.  相似文献   

18.
Ladders of relative alkali ion affinities of crown ethers and acyclic analogs were constructed by using the kinetic method. The adducts consisting of two different ethers bound by an alkali metal ion, (M1 + Cat + M2)+, were formed by using fast atom bombardment ionization to desorb the crown ethers and alkali metal ions, then collisionally activated to induce dissociation to (M1 + Cat)+ and (M2 + Cat)+ ions. Based on the relative abundances of the cationized ethers formed, orders of relative alkali ion affinities were assigned. The crown ethers showed higher affinities for specific sizes of metal ions, and this was attributed in part to the optimal spatial fit concept. Size selectivities were more pronounced for the smaller alkali metal ions such as Li+, Na+, and K+ than the larger ions such as Cs+ and Rb+. In general, the cyclic ethers exhibited greater alkali metal ion affinities than the corresponding acyclic analogs, although these effects were less dramatic as the size of the alkali metal ion increased.  相似文献   

19.
The kinetics of the reduction of octacyanomolybdate(V) and octacyanotungstate(V) by sulphite ions has been studied over a wide pH range. The reaction is catalysed by alkali metal ions. The rate law is found to be of the form:
The third order rate constants at [OH?] = 0.05 mol dm?3 for the reduction of Mo(CN)83? and W(CN)3?8 were determined as 6.2 x 103dm6mol?2 s?1 and 22.3 dm6mol?2s?1 respectively at 298 K for A+ = Na+ while Ka for the hydrogen sulphite ion was determined as 2.4 x 10?8 mol dm?3. It was established that the reaction proceeds via an outer-sphere mechanism. An explanation for the alkali metal ion catalysis is proposed.  相似文献   

20.
A systematic analysis of the structural, energetic, and thermodynamic factors involved in alkali metal (i.e., Na+, K+, Rb+, and Cs+) complexation by four calix[4]arene crown-6 ethers in the 1,3-alternate conformation is presented here. The ligands (or hosts) in this work are identical to, or closely related to, the four molecules whose selectivity towards complexing Na+, K+, Rb+, and Cs+ from aqueous solutions was studied experimentally by Casnati et al. (Tetrahedron 60(36):7869–7876, 2004). By dividing the complexation process into three different contributions, namely, the binding energy of the ion to the crown, the elastic energy of the crown, and the solvation effect, it becomes clear that the primary factor that determines ion selectivity in crown-6-ethers is not the size of the crown, as currently believed. All four crown ethers preferentially complex with the smallest ion (Na+) in the gas phase. In the condensed phase, these crown-6 ethers preferentially complex with the larger ions only because the aqueous solvation energies of the alkali metal ions make it thermodynamically less favorable to extract the smaller ions from aqueous solutions. This suggests that the current understanding of the factors influencing the selectivity of metal ion complexation by crown ethers may be in need of revision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号