首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regioselective 2- or 5-arylation of imidazole derivatives with aryl halides using palladium catalysts has been described in recent years; whereas the arylation at both C2 and C5 carbons of imidazoles in high yields has not been performed. We found conditions allowing the access to these 2,5-diarylimidazoles via a one pot reaction. The choice of the base was found to be crucial to obtain these products in high yields. Using CsOAc as the base, DMA as the solvent and only 2 mol % of the phosphine-free Pd(OAc)2 the catalyst, the target 2,5-diarylated imidazoles were obtained in moderate to good yields with a wide variety of aryl bromides. Substituents such as fluoro, trifluoromethyl, formyl, acetyl, propionyl, ester, nitro or nitrile on the aryl bromide were tolerated. Sterically congested aryl bromides or heteroaryl bromides can also be employed. Surprisingly the nature of the substituent at position 1 on the imidazole derivative exhibits a huge influence on the reaction.  相似文献   

2.
Through the use of PdCl(dppb)(C3H5) as a catalyst, a range of aryl bromides and chlorides undergoes coupling via C-H bond activation/functionalization reaction with oxazole or benzoxazole in good yields. This air-stable catalyst can be used at low loadings with several substrates. Surprisingly, better results in terms of substrate/catalyst ratio were obtained in several cases using electron-excessive aryl bromides than with the electron-deficient ones. This seems to be mainly due to the relatively low thermal stability of some of the 2-arylbenzoxazoles formed with electron-deficient aryl halides. With these substrates, in order to obtain higher yields of product, the reactions had to be performed at a lower temperature (100-120 °C) using a larger amount of catalyst. On the other hand, in the presence of the most stable products, the reactions were performed at 150 °C using as little as 0.2 mol% catalyst. Arylation of benzoxazole with heteroaryl bromides also gave the coupling products in moderate to high yields using 0.2-5 mol% catalyst. With this catalyst, electron-deficient aryl chloride such as 4-chlorobenzonitrile, 4-chloroacetophenone or 2-chloronitrobenzene have also been used successfully.  相似文献   

3.
Ethylene glycol was used as an efficient and recoverable medium for the reaction of diazoles with aryl iodides and aryl bromides in the presence of CuCl2 as the catalyst and K2CO3 as the base. Consequently, imidazole, benzimidazole, and pyrazole reacted readily under microwave irradiation to give good to excellent yields of their corresponding N-arylated products in relatively short time periods. Apparently, ethylene glycol plays a dual role by activating the catalyst and also providing a homogenous medium for the processes. The reaction medium consisting of the solvent, the base, and the copper salt was recovered and reused successfully in the next several reactions.  相似文献   

4.
The selective Heck reaction of cyclopent-2-en-1-one or cyclohex-2-en-1-one with aryl bromides gives a simple access to the corresponding 3-arylcycloalk-2-en-1-ones. The choice of the base was found to be crucial to avoid the formation of 3-arylcyclopentanones or 3-arylcyclohexanones as side-products. Using KF as base, DMF as solvent and Pd(OAc)2 as catalyst, the target products were obtained in moderate to good yields with a variety of aryl bromides. Substituents such as fluoro, trifluoromethyl, acetyl, benzoyl, formyl, ester or nitrile on the aryl bromide are tolerated. Sterically congested aryl bromides or bromopyridines can also be employed.  相似文献   

5.
A bulky, inexpensive and simple bidentate ligand 1,4-bis(2-hydroxy-3,5-di-tert-butylbenzyl)piperazine (1) has been synthesized and characterized. The palladium catalyst was formed by combination of 1 with [Cl2Pd(COD)] in a ratio of 1:1, tested in the Suzuki-Miyaura and Mizoroki-Heck cross-coupling reactions. Coupling of a variety of aryl bromides with phenylboronic acid using methanol as solvent at room temperature, or at 60 °C, gave generally high yields of coupled products. Coupling of aryl chlorides with organoboron reagent at 110 °C in DMF afforded good yields of biaryls under aerobic conditions. This non-phosphorus, air and moisture stable catalyst also displays good activity for Mizoroki-Heck coupling reaction in methanol at 60 °C with various aryl chlorides and bromides.  相似文献   

6.
The complex [PdCl2(P-N)] containing the basic and sterically demanding 8-(di-tert-butylphosphinooxy)quinoline ligand (P-N) is a highly efficient catalyst for the coupling of phenylboronic acid with aryl bromides or aryl chlorides. The influence of solvent and base has been investigated, the highest rates being observed at 110 °C in toluene with K2CO3 as the base. With aryl bromides the reaction rates are almost independent on the electronic properties of the para aryl substituents, on the contrary, reduced reaction rates are observed when bulky substituents are present on the substrate. Nevertheless the coupling of 2-bromo-1,3,5-trimethylbenzene with phenylboronic acid can be carried out to completion in 2 h using a catalyst loading of 0.02 mol %. Under optimized reaction conditions, turnover frequencies as high as 1900 h−1 can be obtained in the coupling of 4-chloroacetophenone with phenylboronic acid; lower reaction rates are obtained with substrates bearing EDG substituents on the aryl group.  相似文献   

7.
A highly general, convenient, and inexpensive catalyst system was developed for the N-arylation of sulfonamides with aryl iodides or bromides by using 5-20 mol % of CuI as catalyst, 20 mol % of N-methylglycine (for aryl iodides) or N,N-dimethylglycine (for aryl bromides) as ligand, and K3PO4 as base.  相似文献   

8.
Ming Li 《Tetrahedron letters》2009,50(13):1478-310
An efficient procedure for the direct C-H arylation of electron-poor aromatics such as pyrazine and pyridine with aryl bomides is described. In the presence of catalytic amount of Cy3PAuCl and with the use of t-BuOK as base, pyrazine undergoes the direct C-H arylation with aryl bromides at 100 °C, and the yields of the arylated products depend on the nature of aryl bromides. In the cases of electron-rich aryl bromides used, the arylated pyrazines can be obtained in good to high yields. For electron-poor aryl bromides, the addition of AgBF4 is the crucial point to accelerate the coupling reaction to give the arylated products in moderate yields. Pyridine also reacts with electron-rich aryl bromides catalyzed by Cy3PAuCl to give a mixture of arylated regioisomers in moderate yield. However, in order to realize the direct C-H arylation of pyridine with electron-poor aryl bromides, the addition of silver salt as additive and a milder reaction temperature (60 °C) are required.  相似文献   

9.
Primary aromatic amides were prepared by a palladium-catalyzed aminocarbonylation reaction of aryl halides in high yields (70-90%) using formamide as the amine source. The reactions require a palladium catalyst in combination with a nucleophilic Lewis base such as imidazole or 4-(dimethylamino)pyridine (DMAP). Aryl, heteroaryl, and vinyl bromides and chlorides were converted to the primary amides under mild conditions (5 bar, 120 degrees C) using 1 mol % of a palladium-phosphine complex. Best results were obtained in dioxane using triphenylphosphine as the ligand and DMAP as the base. For activated aryl bromides, a phosphine-to-palladium ratio of 2:1 was sufficient, but less reactive aryl bromides or aryl chlorides required ligand-to-palladium ratios up to 8:1 in order to stabilize the catalyst and achieve full conversion. The influence of catalyst, base, solvent, pressure, and temperature was studied in detail. The mechanism of the reaction could be clarified by isolating and identifying the reaction intermediates. In addition, methylamides and dimethylamides were prepared by the same method using N-methylformamide and N,N-dimethylformamide as the amine source.  相似文献   

10.
Phosphites were employed as ligands in palladium-catalyzed Hiyama coupling reactions. The optimized reaction conditions were equimolar amounts (5 mol % each) of Pd(acac)2 and phosphite 1 in p-xylene at 80 °C with TBAF as an additive. This catalyst system exhibited high activities in the reactions with trimethoxysilylbenzene and aryl bromides that have electron-donating or electron-withdrawing groups. In the case of aryl chlorides, substrates possessing electron-withdrawing groups gave the coupled products in high yields.  相似文献   

11.
For the first time, a palladium complex with a porphyrin ligand is used as a catalyst precursor for cross-coupling reactions. The synthesis of a palladium complex with a phosphine-free and water-soluble potassium carboxylate salt of a porphyrin, and its evaluation in the Suzuki-Miyaura reaction of phenylboronic acid with aryl bromides (from electron-rich to electron-poor), in neat water, under aerobic conditions is described. Catalysis is performed at 100 °C for 4 h, using K2CO3 as base, and a substrate to catalyst molar ratio of 1000:1, leading to yields of coupling products in the range of 80-100%. The catalyst can be recycled and reused, but unfortunately, with a loss in activity.  相似文献   

12.
The tetraphosphine all‐cis‐1,2,3,4‐tetrakis(diphenylphosphinomethyl)cyclopentane (Tedicyp) in combination with [Pd(C3H5)Cl]2 affords a very efficient catalyst for the coupling of cyclopropylboronic acid with aryl bromides and aryl chlorides. Higher reactions rates were observed with aryl bromides than with aryl chlorides; however, even in the presence of 1–0.4% of catalyst, a few aryl chlorides gave the coupling products in good yields. A wide variety of substituents such as alkyl, methoxy, trifluoromethyl, acetyl, benzoyl, formyl, carboxylate, nitro, and nitrile on the aryl halides are tolerated. The coupling reaction of sterically very congested aryl bromides such as bromomesitylene or 2,4,6‐triisopropylbromobenzene also proceeds in good yields.  相似文献   

13.
Jincheng Mao  Jun Guo 《Tetrahedron》2008,64(18):3905-3911
Readily available copper powder with K2CO3 as the base was extremely effective catalyst for Suzuki-Miyaura coupling reaction performed in PEG-400, which afforded almost quantitative coupling products of aryl iodides. Using iodine as additive, coupling products of aryl bromides or chlorides could be obtained with moderate to good yields.  相似文献   

14.
A palladium complex bearing 1,2-diphenyl-3,4-diphosphinidenecyclobutene ligand (DPCB) has been used to facilitate the catalytic cyanation of aryl bromides. A series of substituted benzonitriles was prepared in good to high yields by the treatment of the corresponding aryl bromides with Zn(CN)2 in N-methyl-2-pyrrolidone in the presence of 2-4 mol % catalyst at 100 °C for 16 h.  相似文献   

15.
The palladium-catalysed direct coupling of aryl halides with pyrroles provides a greener access to arylated pyrroles than more classical couplings such as Suzuki, Stille or Negishi reactions. However, so far, NH-free pyrrole and N-tosylpyrrole gave disappointing results for such couplings either in terms of regioselectivity of the arylation, catalyst loading or substrate scope. The reactivity of both NH-free pyrrole and N-tosylpyrrole was studied, and the tosylated pyrrole led to higher yields of coupling products due to better conversions of the aryl bromides. A range of aryl bromides undergo regioselective coupling at C2 of N-tosylpyrrole in moderate to good yields using 1 mol % [Pd(Cl(C3H5)]2 as the catalyst, KOAc as the base in DMAc.  相似文献   

16.
Both electron-deficient and electron-rich aryl bromides undergo biaryl homo-coupling in a basic aqueous-ethanolic medium in the presence of PdCl2-EDTA (1:1 molar ratio, 3 mol %) as catalyst and ascorbic acid as reductant (1 mol equiv) in acceptable to good yields.  相似文献   

17.
An experimentally simple, efficient, and inexpensive catalyst system was developed for the N-arylation of imidazole, indole, pyrrole, alkyl alcohol amines, and alkyl amines with aryl iodides and bromides. The reaction proceeds in water-ethanol media at 120 °C for 12 h with Cu2O as the catalyst, 1-(2-methylhydrazine-1-carbonyl)-isoquinoline 2-oxide (L2) as the ligand, NaOH as the base to generate a wide range of N-arylated products in moderate to excellent yields. Aqueous medium, ease of operation, and broad substrate scope give the process a benign environmental profile.  相似文献   

18.
CuI‐catalyzed coupling reactions of aryl iodides and electron‐deficient aryl bromides with nitrogen‐containing reagents, such as imidazole, benzimidazole, aliphatic primary and secondary amines, aniline, primary and secondary amides, in ionic liquid were developed. The reaction conditions involved the use of [Bmim][BF4] as the solvent, potassium phosphate as the base, and CuI as the catalyst. The CuI and [Bmim][BF4] could be recovered and recycled for five consecutive trials without significant loss of their activity.  相似文献   

19.
The advantages of combining heterogeneous catalysis and aryl chloride substrates for cross-coupling are introduced. A heterogeneous Pd/C catalyst is used for activating aryl bromides and electron withdrawing aryl chlorides via a one-pot 'domino' HALEX-Sonogashira reaction. No ligand or co-catalyst is required, and the cross-coupling products are obtained in moderate to good yields. The influence of the solvent, base, iodide source and catalyst is evaluated. The catalyst is reusable for at least six consecutive reaction cycles. A variation on this reaction using catalytic amounts of KI is also proposed.  相似文献   

20.
为筛选高效催化Suzuki反应的催化剂, 合成了3种新的环钯化二茂铁亚胺-三苯基膦配合物2~4, 经元素分析(或HRMS)、 红外光谱和核磁共振谱对其结构进行了表征, 并通过X射线单晶衍射测定了化合物3的晶体结构. 这些化合物容易合成, 在空气和溶液中稳定, 可用作芳基溴及杂芳基溴与苯基硼酸偶联的Suzuki反应催化剂. 使用摩尔分数为0.01%的催化剂3, 以2倍量的K3PO4为碱, 于110 ℃下, 在甲苯中反应5~15 h, 使具有不同电子和位阻效应的取代芳基溴及杂芳基溴能以较高的产率与苯基硼酸反应生成偶联产物; 与溴苯相比, 带吸电子基的溴苯反应活性较高, 催化剂的摩尔分数降低至0.001%时, 仍能得到较高产率, 而带强给电子基的溴苯如4-溴苯甲醚及带邻位取代基的溴苯在其它条件相同时, 需要延长反应时间才能得到较高的产率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号