首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Measurements of surface tension of aqueous solutions of cetyltrimethylammonium bromide (CTAB) and propanol mixtures (gamma(L)) for 1 x1 0(-5), 1 x 10(-4), 6 x 10(-4), and 1 x 10(-3) M concentrations of CTAB as a function of propanol concentration in the range from 0 to 6.67 M at 293 K were carried out. The obtained results indicate that there is first-order exponential relationship between the surface tension and propanol concentration in the solution at constant CTAB concentration. These results were compared with those calculated from the equations derived by von Szyszkowski, Joos, Miller et al. From the comparison it resulted that the values of gamma(L) determined by the Szyszkowski equation are correlated with those measured only in a limited propanol concentration range because of changes of the constant related to the specific capillary activity in this equation as a function of propanol concentration, particularly in the range of its high concentration. In the case of the modified Joos equation there is a correlation between the calculated and measured values of gamma(L) only at a very low concentration of propanol. The values of the surface tension of aqueous solutions of CTAB and propanol mixtures determined by the relationships of Miller et al. at CTAB concentration, corresponding to unsaturated surface layer in the absence of propanol, are close to those measured, but there are bigger differences between the calculated and measured values of the surface tension for solutions at a constant value of CTAB concentration close to CMC. However, the values of the surface tension of aqueous solution of CTAB and propanol mixtures calculated from the modified Miller et al. equation, in which the aggregation process of alcohol molecules at water-air interface was taken into account, are in excellent agreement with those measured. The measured values of the surface tension and the Gibbs equations were used for determination of the surface excess of CTAB and propanol concentration at solution-air interface. The obtained results indicate that at the constant concentration of CTAB equal to 1 x 10(-5) and 1 x 10(-4) M there is a maximum of excess concentration of propanol in the surface region at its bulk concentration close to 1 M. Using the calculated values of the surface excess concentration of propanol and CTAB at solution-air interface and assuming the proper thickness of the interface region, the total values of their concentration in this region were evaluated. Next, the standard surface free energy of CTAB and propanol mixtures adsorption was calculated. The calculated values of this energy indicate that the tendency to adsorb molecules of CTAB and propanol decreases with increasing propanol concentration probably because of entropy of adsorption decrease resulting from water structure destruction by propanol molecules.  相似文献   

2.
The effect of temperature and concentration on the structure of sec-butyl alcohol and isobutyl alcohol/water binary mixtures in the alcohol-rich region (mole fraction of water X(H2O) < 0.3) has been studied using Fourier transform (FT) near-infrared (NIR) spectroscopy. The experimental data were analyzed by a two-dimensional (2D) correlation approach and chemometric methods. It was found that molecules of both alcohols in the mixture with water are in the same environment as those in the pure alcohols. Even at very low water content (X(H2O) = 0.001) we did not observe water free from any specific interactions. The molecules of water are attached to the end free OH groups in the open chain associates of alcohol. In this way the structure of neat alcohol remains intact by addition of water. The water-alcohol interactions in sec-butyl alcohol and isobutyl alcohol/water mixtures are stronger than those in bulk water. The results obtained at higher water content or elevated temperatures indicate the possibility of water-water interaction. In the alcohol-rich region the hydrophobic effects are of minor importance and the structure and properties of these systems are determined by hydrogen bonding through the hydroxyl groups. Both alcohols behave similarly on the temperature or water content variation; the minor difference results from a different degree of self-association for sec-butyl alcohol and isobutyl alcohol.  相似文献   

3.
Broadband dielectric measurements of poly(vinyl pyrrolidone) (PVP)-monohydroxyl alcohol mixtures of various normal alcohols with the number of carbon atoms per molecule ranging from 1 to 9 were made in the frequency range of 20 Hz to 20 GHz at 25 degrees C. Two relaxation processes due to the reorientation of dipoles on the PVP and alcohol molecules were observed. The relaxation process at frequencies higher than 100 MHz is the primary process of alcohols, and that at frequencies lower than 10 MHz is attributed to the local chain motion of PVP. For mixtures of alcohol molecules that are smaller than propanol, the relaxation time of the alcohol increases with increasing PVP concentration, whereas for mixtures of alcohol molecules larger than butanol, the relaxation time of the alcohol decreases with increasing PVP concentration. The increase in the density of hydrogen-bonding sites upon the addition of PVP reduces the relaxation time of alcohol in the mixture, and vice versa. The relaxation time of the local chain motion of PVP increases with PVP concentration and solvent viscosity. Different time scales of the molecular motions of polymer and solvent coexist in homogeneous mixtures with hydrogen-bonded polar solvent and polymer.  相似文献   

4.
Measurements of contact angles (theta) of aqueous solutions of cetyltrimethylammonium bromide (CTAB) and propanol mixtures at constant CTAB concentration equal to 1x10(-5), 1x10(-4), 6x10(-4) and 1x10(-3) M on polytetrafluoroethylene (PTFE) were carried out. The obtained results indicate that the wettability of PTFE by aqueous solutions of these mixtures depends on their composition and concentration. They also indicate that, contrary to Zisman, there is no linear relationship between cos theta and the surface tension (gamma(LV)), but a linear relationship exists between the adhesional (gamma(LV)cos theta) and surface tension of aqueous solutions of CTAB and propanol mixtures. Curve gamma(LV)cos theta vs gamma(LV) has a slope equal -1 suggesting that adsorption of CTAB and propanol mixtures and the orientation of their molecules at aqueous solution-air and PTFE-aqueous solution interfaces is the same. Extrapolating this curve to the value of gamma(LV)cos theta corresponding to theta=0, the value of the critical tension of PTFE wetting equal 23.4 mN/m was determined. This value was higher than that obtained from contact angles of n-alkanes on PTFE surface (20.24 mN/m). The difference between the critical surface tension values of wetting probably resulted from the fact that at cos theta=1 the PTFE-aqueous solution of CTAB and propanol mixture interface tension was not equal to zero. This tension was determined on the basis of the measured contact angles and Young equation. It appeared that the values of PTFE-aqueous solution of the CTAB and propanol mixtures interface tension can be satisfactorily determined by modified Szyszkowski equation only for solutions in which probably CTAB and propanol molecules are present in monomeric form. However, it appeared that using the equation of Miller et al., in which the possibility of aggregation of propanol molecules in the interface layer is taken into account, it is possible to describe the PTFE-solution interfacial tension for all systems studied in the same way as by the Young equation. On the basis of linear dependence between the adhesional and surface tension it was established that the work of adhesion of aqueous solution of CTAB and propanol mixtures does not depend on its composition and concentration, and the average value of this work was equal to 46.85 mJ/m(2), which was similar to that obtained for adhesion of aqueous solutions of two cationic surfactants mixtures to PTFE surface.  相似文献   

5.
The surface properties of saponin and saponin-chitosan mixtures were analysed as a function of their bulk mixing ratio using vibrational sum-frequency generation (SFG), surface tensiometry and dilational rheology measurements. Our experiments show that saponin-chitosan mixtures present some remarkable properties, such as a strong amphiphilicity of the saponin and high dilational viscoelasticity. We believe this points to the presence of chitosan in the adsorption layer, despite its complete lack of surface activity. We explain this phenomenon by electrostatic interactions between the saponin as an anionic surfactant and chitosan as a polycation, leading to surface-active saponin-chitosan complexes and aggregates. Analysing the SFG intensity of the O-H stretching bands from interfacial water molecules, we found that in the case of pH 3.4 for a mixture consisting of 0.1 g/L saponin and 0.001 g/L chitosan, the adsorption layer was electrically neutral. This conclusion from SFG spectra is corroborated by results from surface tensiometry showing a significant reduction in surface tension and effects on the dilational surface elasticity strictly at saponin/chitosan ratios, where SFG spectra indicate zero net charge at the air–water interface.  相似文献   

6.
The heats of immersion of partially dried anatase and rutile pigments in mixtures of water with methanol, ethanol, and n-propanol were measured by a differential calorimetric method. The anatase heats of immersion could best be explained by assuming preferential adsorption of the alcohols, the effect being greatest for n-propanol The rutile pigment, however, appeared to adsorb water preferentially in methanol—water and ethanol—water mixtures over the whole concentration range. In propanol—water mixtures the rutile pigment preferentially adsorbed water below an alcohol mol fraction of 0.25, and preferentially adsorbed propanol at mol fractions of alcohol greater than 0.25. The differences in behaviour between the two pigments may be explained qualitatively from the point of view of their surface morphology.  相似文献   

7.
The effect of temperature and concentration on the structure of tert-butyl alcohol/water binary mixtures in the alcohol-rich region (X(H2O) < 0.3) has been studied by using Fourier transform near-infrared (FT-NIR) spectroscopy. The obtained results demonstrate that the addition of a small amount of water to tert-butyl alcohol (2-methyl-2-propanol, abbreviated as TBA) leads to minor changes in the structure of neat TBA and suggest that molecules of TBA in the mixture are in the same environment as those in pure TBA. The bands of water are red-shifted in the mixture relative to bulk water, implying that the molecules of water in TBA are involved in stronger hydrogen bonding. The present experimental data give no evidence for the existence of nonbonded water in the mixture. Even at a very low content of water, the main NIR bands of water (nu(2) + nu(3) and nu(1) + nu(3)) have two components showing markedly different behavior upon an increase in temperature. From the power spectra, it is seen that the extent of intensity changes due to the free OH groups of TBA is smaller in the mixture relative to pure TBA. All of these results support the model of chain-end bonding of water molecules to TBA associates. An increase in X(H2O) reduces the population of nonbonded OH groups of TBA, yet both processes do not appear at the same rate. The amount of bonded OH groups of water increases faster than that of the nonbonded ones. It seems that the water-water interaction becomes more important as X(H2O) increases. At high alcohol content, the position of the CH alkyl stretching bands is constant, evidencing a negligible role of the hydrophobic hydration in the mixture.  相似文献   

8.
This articles studied and determined the viscosities of the binary mixtures of water–methanol, water–ethanol, water–propanol, water–acetone, acetone–ethanol, methanol–ethanol, and acetone–hexane and the ternary mixtures of water–methanol–ethanol and water–ethanol–acetone at 20°C. It is shown that the mixing of water with the alcohols and acetone resulted in a positive deviation of viscosity, which reached the maximum value at the water mole fraction x 1 ~ 0.7 for water–methanol, x 1 ~ 0.72 for water–ethanol, x 1 ~ 0.74 for water–propanol, and x 1 ~ 0.83 for water–acetone binary mixture. This viscosity deviation can be mainly attributed to the formation of micelles of alcohol or acetone molecules in water because of the hydrophobic attraction between the hydrocarbon chains. The micelle surfaces are surrounded by hydration layers, leading to the positive viscosity deviation in the liquid mixtures because the water in hydration layers has a much higher viscosity than bulk water. Also, the contrary observation was found in the binary mixtures of acetone–ethanol and acetone–hexane, having a negative viscosity deviation.  相似文献   

9.
In the study described here, the surface structure of a self-assembly octyl hydroxamic acid at a calcium fluoride (CaF(2)) surface is evaluated using sum-frequency vibrational spectroscopy (SFVS). Of particular significance are the results that show octyl hydroxamic acid adsorbs at the fluorite surface from octanol solution and has more ordering and molecular conformation than the octyl hydroxamic acid adsorbed from solution. At the fluorite/0.1 M octyl hydroxamic acid octanol solution interface a bilayer-like structure consisting of an octyl hydroxamic acid layer in contact with fluorite and a tilted alcohol layer was observed by SFVS. The alcohol molecules are oriented with respect to the hydroxamic acid monolayer with the OH groups directed towards the bulk alcohol phase and the terminal CH(3) group oriented to face the alkyl chains of the hydroxamic acid monolayer.  相似文献   

10.
Advancing contact-angle (theta) measurements were carried out with aqueous solutions of propanol and four series of aqueous solutions of dodecyl sulfate (SDDS) and propanol mixtures at constant dodecyl sulfate concentrations equal to 1 x 10(-5), 6 x 10(-4), 1 x 10(-3), and 1 x 10(-2)M, respectively. The obtained results indicate that in the range of propanol concentrations studied there were considerable contact-angle changes, with exception of the solution series at a constant concentration value of SDDS higher than its critical micelle concentration. From the results of contact-angle measurements and application of the Gibbs and Young equations the ratio of the excess concentration of surfactant and propanol at the solid-aqueous solution interface to the excess of their concentration at the aqueous solution-air interface was calculated. From the calculations it appears that there is a straight linear dependence between the adhesion tension and surface tension of aqueous solutions of SDDS and propanol mixtures, and the slope of the line is equal to -1, which suggests that the surface excess of the SDDS and propanol mixture at the polytetrafluoroethylene-solution interface is the same as the at the solution-air interface. The extrapolation of the straight line to the point corresponding to the surface tension of the aqueous solution, which completely spreads over the polytetrafluoroethylene surface, gives a critical surface tension of wetting equal to 23.7 mN/m. On the basis of the critical surface tension and the Young and modified Szyszkowski equations it was found that in a polytetrafluoroethylene-aqueous solution of the SDDS and propanol mixture, the interface tension can be predicted by the modified Szyszkowski equation.  相似文献   

11.
This paper is focused on the composition of a cosolvent in the vicinity of a protein surface (local composition) and its dependence on various factors. First, the Kirkwood-Buff theory of solution is used to obtain analytical expressions that connect the excess or deficit number of cosolvent and water molecules in the vicinity of a protein surface with experimentally measurable quantities such as the bulk concentration of the mixed solvent, the preferential binding parameter, and the molar volumes of water and cosolvent. Using these expressions, relations between the preferential binding parameter (at a molal concentration scale) and the above excesses (or deficits) are established. In addition, the obtained expressions are used to examine the effect of the nonideality of the water + cosolvent mixtures and of the molar volume of the cosolvent on the excess (or deficit) number of cosolvent molecules in the vicinity of the protein surface. It is shown that at least for the mixed solvents considered (water + urea and water + glucose) the nonideality of the mixed solvent is not an important factor in the local compositions around a protein molecule and that the main contribution is provided by the nonidealities of the protein-water and protein-cosolvent mixtures. Special attention is paid to urea as cosolvent, because urea is one of only a few compounds with a concentration at the protein surface larger than its concentration in the bulk. The composition dependence of the excess of urea around a protein molecule is calculated for the water + lysozyme + urea mixture at pH = 7.0 and 2.0. At pH = 7.0, the excess of urea becomes almost composition independent at high urea concentrations. Such independence could be explained by assuming that urea totally replaces water in some areas of the protein surface, whereas on the remaining areas of the protein surface both water and urea are present with concentration comparable to those in the bulk. The Schellman exchange model was used to relate the preferential binding parameter in water + lysozyme + urea mixtures to the urea concentration.  相似文献   

12.
Micro-Raman spectroscopy was used to investigate the selective adsorption of methanol/water mixtures on the surface of [60] fullerene nanospheres. C60 molecules were dispersed in methanol/water mixtures with different methanol molar fractions ranging between 1 and 0.5. The Raman active pentagon pinch mode shifted significantly (±4 cm−1) as the mixture composition was changed. The shift in the Raman mode was sinusoidal in nature indicating that methanol then water is adsorbed preferentially on the fullerene surface at different mixture compositions. The observed behavior is attributed to structure forming effects of alcohol/water mixtures and the shape and size effect of fullerene surface.  相似文献   

13.
Quasielastic neutron scattering measurements have been made for 1-propanol-water mixtures in a range of alcohol concentration from 0.0 to 0.167 in mole fraction at 25 degrees C. Fraction alpha of water molecules hydrated to fractal surface of alcohol clusters in 1-propanol-water mixture was obtained as a function of alcohol concentration. Average hydration number N(ws) of 1-propanol molecule is derived from the value of alpha as a function of alcohol concentration. By extrapolating N(ws) to infinite dilution, we obtain values of 12-13 as hydration number of isolated 1-propanol molecule. A simple interpretation of structural origin of anomalous excess partial molar volume of water is proposed and as a result a simple equation for the excess partial molar volume is deduced in terms of alpha. Calculated values of the excess partial molar volumes of water and 1-propanol and the excess molar volume of the mixture are in good agreement with experimental values.  相似文献   

14.
Solvation of a tetrapeptide, NAc-Ser-Phe-Val-Gly-OMe (1), in water and in water/alcohol mixtures with 2,2,2-trifluoroethanol (TFE)/water or ethanol (ETH)/water has been studied by diffusion NMR and intermolecular NOE measurements. The experimental results were compared with those obtained from detailed Molecular Dynamics (MD) calculations. Independently, all three methods revealed preferential solvation on the surface of the peptide by TFE in the water/TFE mixtures, but not by ETH in the water/ETH mixtures. The MD calculations show that the TFE concentration coating the peptide is higher than that in the bulk, while for ethanol, the concentration is nearly equal to that in the bulk. Calculated site-specific preferential solvation data between TFE, ETH, and water with the different peptide groups have been compared with the NMR data and shown to be in general agreement with the experimental facts.  相似文献   

15.
Measurements of the advancing contact angles for aqueous solutions of sodium dodecyl sulfate (SDDS) or sodium hexadecyl sulfonate (SHS) in mixtures with methanol, ethanol, or propanol on a quartz surface were carried out. On the basis of the obtained results and Young and Gibbs equations the critical surface tension of quartz wetting, the composition of the surface layer at the quartz-water interface, and the activity coefficients of the anionic surfactants and alcohols in this layer as well as the work of adhesion of aqueous solutions of anionic surfactant and alcohol mixtures to the quartz surface were determined. The analysis of the contact angle data showed that the wettability of quartz changed visibly only in the range of alcohol and anionic surfactant concentration at which these surface-active agents were present in the solution in the monomeric form. The analysis also showed that there was a linear dependence between the adhesion and the surface tension of aqueous solutions of anionic surfactant and alcohol mixtures. This dependence can be described by linear equations for which the constants depend on the anionic surfactant and alcohol concentrations. The slope of all linear dependence between adhesion and surface tension was positive. The critical surface tension of quartz wetting determined from this dependence by extrapolating the adhesion tension to the value equal to the surface tension (for contact angle equal zero) depends on the assumption whether the concentration of anionic surfactant or alcohol was constant. Its average value is equal to 29.95mN/m and it is considerably lower than the quartz surface tension. The positive slope of the adhesion-surface tension curves was explained by the possibility of the presence of liquid vapor film beyond the solution drop which settled on the quartz surface and the adsorption of surface-active agents at the quartz/monolayer water film-water interface. This conclusion was confirmed by the work of adhesion of aqueous solutions of anionic surfactants and short-chain alcohol mixtures to the quartz surface determined on the basis of the contact angle data and molar fraction of anionic surfactants and alcohols and their activity coefficient in the surface layer.  相似文献   

16.
From measurements of the surface tension, density, viscosity and light scattering of aqueous solutions of methanol, ethanol and propanol at 293?K, their activity in the surface monolayer, surface excess concentration, and apparent and partial molar volume were determined. The surface excess concentration of alcohols at the water?Cair interface was determined from the Gibbs equation by using both the alcohol's activity and their molar fraction in the bulk phase and recalculated by using the Guggenheim?CAdam equation. The values of the surface excess concentration determined from the Gibbs equation were also applied to determine the standard Gibbs energy of alcohol adsorption at the water?Cair interface from Langmuir??s equation and compared to those determined from that of Aronson and Rosen.  相似文献   

17.
Measurements of the advancing contact angle (theta) were carried out for aqueous solution of p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycol), Triton X-100 (TX100), and Triton X-165 (TX165) mixtures on glass. The obtained results indicate that the wettability of glass depends on the concentration and composition of the surfactant mixture. The relationship between the contact angle and concentration suggests that the lowest wettability corresponds to the concentration of TX100 and TX165 and their mixture near the critical micelle concentration (CMC). The minimum of the dependence between the contact angle and composition of the mixtures for each concentration at a monomer mole fraction of TX100, alpha, equals 0.2 and 0.4 points to synergism in the wettability of the glass surface. In contrast to the results of Zisman ( Zisman, W. A. In Contact Angle, Wettability and Adhesion; Gould, R. F., Ed.; Advances in Chemistry Series 43; American Chemical Society Washington, DC, 1964; p 1 ) there was no linear dependence between cos theta and the surface tension of aqueous solutions of TX100 and TX165 mixtures for all studied systems, but a linear dependence exists between the adhesional tension and surface tension for glass, practically, in the whole concentration range of surfactants studied, the slopes of which are positive in the range of 0.43-0.67. These positive slopes indicate that the interactions between the water molecules and glass surface might be stronger than those between the surface and surfactant molecules. So, the surface excess of surfactant concentration at the glass-water interface is probably negative, and the possibility for surfactant to adsorb at the glass/water film-water interface is higher than that at the glass-water interface. This conclusion is confirmed by the values of the work of adhesion of "pure" surfactants, aqueous solutions of surfactants, and aqueous solutions of their mixtures to the glass surface and by the negative values of glass-water interfacial tension determined from the Young equation in the range of surfactant concentrations corresponding to their unsaturated monolayer at the water-air interface.  相似文献   

18.
The thermal decomposition reaction of acetone cyclic triperoxide, acetone cyclic diperoxide, 4‐heptanone cyclic diperoxide, and pinacolone cyclic diperoxide ca. 0.02 M was studied in pure solvents (acetone and 1‐propanol) and in binary mixtures of acetone/1‐propanol at 150°C. The kinetics of each system was explored by gas chromatography (GC) at different solvent compositions. The reactions showed a behavior accordingly with a pseudo‐first‐order kinetic law up to at least 90% peroxide decomposition. The main organic products derived from these thermolysis reactions were detected by GC analysis. Among them, the corresponding ketones, methane, ethane, and propane were the main identified products. The rates of decomposition of pinacolone diperoxide in the pure solvents were practically independent of the solvent characteristics, so it was of no interest to analyze its kinetic behavior in binary solvent mixtures. In acetone/1‐propanol mixtures, the solvation effect on the cyclic peroxides derived from 4‐heptanone and acetone molecules was slightly dominated by specific interactions between 1‐propanol and a diradical‐activated complex initially formed. This species was preferentially solvated by 1‐propanol instead of acetone. Specific interactions between the O atoms from the peroxidic bond and the H from the OH in 1‐propanol can be taken into account. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 347–353, 2010  相似文献   

19.
We developed a new surface-selective time-resolved nonlinear spectroscopy, femtosecond time-resolved electronic sum-frequency generation (TR-ESFG) spectroscopy, to investigate ultrafast dynamics of molecules at liquid interfaces. Its advantage over conventional time-resolved second harmonic generation spectroscopy is that it can provide spectral information, which is realized by the multiplex detection of the transient electronic sum-frequency signal using a broadband white light continuum and a multichannel detector. We studied the photochemical dynamics of rhodamine 800 (R800) at the air/water interface with the TR-ESFG spectroscopy, and discussed the ultrafast dynamics of the molecule as thoroughly as we do for the bulk molecules with conventional transient absorption spectroscopy. We found that the relaxation dynamics of photoexcited R800 at the air/water interface exhibited three characteristic time constants of 0.32 ps, 6.4 ps, and 0.85 ns. The 0.32 ps time constant was ascribed to the lifetime of dimeric R800 in the lowest excited singlet (S(1)) state (S(1) dimer) that is directly generated by photoexcitation. The S(1) dimer dissociates to a monomer in the S(1) state (S(1) monomer) and a monomer in the ground state with this time constant. This lifetime of the S(1) dimer was ten times shorter than the corresponding lifetime in a bulk aqueous solution. The 6.4 ps and 0.85 ns components were ascribed to the decay of the S(1) monomer (as well as the recovery of the dimer in the ground state). For the 6.4 ps time constant, there is no corresponding component in the dynamics in bulk water, and it is ascribed to an interface-specific deactivation process. The 0.85 ns time constant was ascribed to the intrinsic lifetime of the S(1) monomer at the air/water interface, which is almost the same as the lifetime in bulk water. The present study clearly shows the feasibility and high potential of the TR-ESFG spectroscopy to investigate ultrafast dynamics at the interface.  相似文献   

20.
The present paper is devoted to the local composition of liquid mixtures calculated in the framework of the Kirkwood-Buff theory of solutions. A new method is suggested to calculate the excess (or deficit) number of various molecules around a selected (central) molecule in binary and multicomponent liquid mixtures in terms of measurable macroscopic thermodynamic quantities, such as the derivatives of the chemical potentials with respect to concentrations, the isothermal compressibility, and the partial molar volumes. This method accounts for an inaccessible volume due to the presence of a central molecule and is applied to binary and ternary mixtures. For the ideal binary mixture it is shown that because of the difference in the volumes of the pure components there is an excess (or deficit) number of different molecules around a central molecule. The excess (or deficit) becomes zero when the components of the ideal binary mixture have the same volume. The new method is also applied to methanol + water and 2-propanol + water mixtures. In the case of the 2-propanol + water mixture, the new method, in contrast to the other ones, indicates that clusters dominated by 2-propanol disappear at high alcohol mole fractions, in agreement with experimental observations. Finally, it is shown that the application of the new procedure to the ternary mixture water/protein/cosolvent at infinite dilution of the protein led to almost the same results as the methods involving a reference state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号