首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
基于NIR分析和模式识别技术的玉米种子识别系统   总被引:4,自引:0,他引:4  
模式识别技术及数据挖掘方法已成为化学计量学的研究热点。近红外(NIR)光谱分析以其快速、简便、非破坏性等优势广泛应用于光谱信号的处理和分析模型的建立。文章基于五种不同的模式识别方法:局部线性嵌入(LLE),小波变换(WT),主成分分析(PCA),偏最小二乘(PLS)和支持向量机(SVM),利用NIR技术建立了玉米种子的模式识别系统,并将其应用于108玉米杂交种和母本178种子的近红外光谱样品。首先利用LLE,WT,PCA,PLS进行消噪或降维,然后运用SVM进行分类识别,而一模支持向量机(1-norm SVM)算法直接进行分类识别。三个不同NIR光谱范围的数值实验显示:PCA+SVM,LLE+SVM,PLS+SVM识别效果甚佳,而WT+SVM和1-norm SVM方法也有较高的分类精度。实验结果表明了本文提出方法的可行性和有效性,为利用近红外光谱和模式识别技术进行种子识别研究提供了理论依据和实用方法。  相似文献   

2.
NIR光谱的LLE-PLS非线性建模方法及应用   总被引:4,自引:1,他引:4  
传统的偏最小二乘(PLS)建模方法不能有效反映近红外(NIR)光谱与分析样本的物理化学性质之间存在的非线性关系。局部线性嵌入(LLE)是一种新的非线性降维方法,属于流形学习方法,它能有效地发现高维数据中的本真低维结构。结合LLE和PLS,提出一种近红外光谱非线性建模的新方法,并用于建立丹参多酚酸盐柱层析过程中丹酚酸B含量的回归校正模型。该方法首先用LLE对NIR光谱数据降维,再用PLS建立校正模型。结果表明,与多元散射校正、一阶导等预处理方法结合PLS建模比较,参数优化后的LLE-PLS方法能更准确地预测丹酚酸B的含量,其交叉验证均方根误差为0.128 mg·mL-1、决定系数为0.998 8。基于NIR光谱及LLE-PLS建模,可实现丹参多酚酸盐柱层析过程的在线检测。  相似文献   

3.
基于可见/近红外光谱分析技术的猪肉肉糜品质检测研究   总被引:2,自引:0,他引:2  
以225个猪肉肉糜样本为研究对象,利用可见/近红外光谱分析技术对猪肉肉糜主要品质指标的的快速检测进行了研究.光谱经小波去噪后,采用偏最小二乘法和支持向量机定量分析方法分别建立了肉糜中肌内脂肪、蛋白质和水分含量的可见/近红外光谱预测模型.其中,肌内脂肪的支持向量机定量预测模型最优,校正相关系数rcal和预测相关系数rva...  相似文献   

4.
PCA和SPA的近红外光谱识别白菜种子品种研究   总被引:2,自引:0,他引:2  
为了实现对不同品种白菜种子的快速无损鉴别,应用近红外光谱技术获取白菜种子的光谱反射率,首先采用变量标准化校正和多元散射校正对原始光谱进行预处理;其次,采用主成分分析法(PCA)对光谱数据进行聚类分析,从定性分析的角度得到三种不同白菜种子的特征差异,并采用连续投影算法(SPA)选取特征波长;最后,分别基于全波段光谱、PCA分析得到的前3个主成分变量以及SPA算法选取的特征波长,建立了最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型进行白菜种子不同品种的鉴别。从主成分PC1、PC2得分图中可以看出,主成分1和2对不同种类白菜种子具有很好的聚类作用。基于特征波长建立的PLS-DA和LS-SVM模型的判别结果优于基于主成分变量建立的模型,其中基于特征波长建立的LS-SVM模型识别效果最优,建模集和预测集的品种识别率均达到100%。结果表明,通过SPA算法选取的6个特征波长变量能够很好的反映光谱信息,提出的SPA算法结合LS-SVM预测模型能获得满意的分类结果,为白菜种子品种的识别提供了一种新方法。  相似文献   

5.
提出了一种基于近红外光谱分析技术和最小二乘支持向量机的鉴别方法,能够快速、无损鉴别聚丙烯酰胺的三种类型。获取非离子,阴离子和阳离子等三种类型的聚丙烯酰胺样本的近红外漫反射光谱,用主成分分析方法对样本光谱数据进行降维,并提取主成分。基于前三个主成分对三种类型的聚丙烯酰胺样本进行聚类分析,并将主成分作为最小二乘支持向量机的输入。通过基于网格搜索的交叉验证方式优化最小二乘支持向量机的参数和作为其输入的主成分个数。每种类型聚丙烯酰胺各采集60个样本,共采集180个样本,每种类型样本随机选取45个样本,共135样本作为训练样本集,剩余45个样本作为测试集。为了验证该方法能否鉴别掺假样本,制备了掺入不同比例非离子聚丙烯酰胺的5个阴离子和5个阳离子聚丙烯酰胺样本。采用基于训练样本集交叉验证预测误差的F统计显著性检验方法来确定样本的鉴别结果误差阈值。结果表明,预测测试集时,准确率为100%。预测10个混和样本时,所有混合样本都被准确识别出。说明该方法能快速无损鉴别不同类型的聚丙烯酰胺并且具有掺假鉴别能力,为聚丙烯酰胺类型的快速鉴别提供了一种新方法。  相似文献   

6.
应用近红外光谱技术快速检测果醋糖度   总被引:7,自引:0,他引:7  
为了对果醋糖度值进行快速准确检测,应用近红外光谱技术并结合最小二乘支持向量机分析方法建立了果醋糖度检测模型.应用近红外透射光谱获取五种类型共计300份果醋样本的光谱透射曲线,利用主成分分析方法对原始光谱数据进行降维处理,根据主成分的累计贡献率选取6个主成分.选取的主成分即作为光谱优化特征子集以替代原来复杂的光谱数据.随后将300份果醋样本数据随机分为定标集和预测集,利用最小二乘支持向量机在225个定标集样本数据基础上建立起果醋糖度预测模型,应用此模型对75个预测集样本进行糖度预测.根据预测均方根误差(RMSEP)和预测结果的相关系数(r)对预测模型进行评价,利用此模型得到的样本糖度预测值r=0.993 9,RMSEP=0.363,均达到了较好的预测效果.  相似文献   

7.
提出了利用可见-近红外光谱技术和多光谱成像技术检测鸭梨损伤随时间及程度变化的新方法.利用可见-近红外光谱技术,分别结合偏最小二乘(panial least squares,PLS)和最小二乘支持向量机(least squares-support vector machine,LS-SVM)方法对鸭梨受损程度和受损天数进行预测.结果表明,两种方法在鸭梨损伤后期对损伤程度的判别均具有较好的效果;LS-SVM方法对鸭梨轻度损伤的损伤天数的预测精度较高,但重度损伤天数的预测效果不如PLS方法.然后利用多光谱图像预测鸭梨受损天数.研究发现,利用LS-SVM建立的模型预测效果较稳定,预测结果相关系数均在0.85左右.说明利用可见-近红外光谱分析技术和多光谱成像技术能够快速无损地检测出鸭梨的损伤程度及时间,为鸭梨检测提供了一种新方法.  相似文献   

8.
利用傅里叶变换近红外光谱技术,对黄酒酒龄鉴别的模型进行研究。对绍兴黄酒样本光谱主成分进行提取与分析,并发现前3个主成分具有较明显的聚类特征。其次,利用LS-SVM模型对不同主成分数进行分类和寻优,发现当主成分数为6时达到判别的正确率是100%,此时模型的两个参数γ和2σ分别为61.890和1.769。研究表明,利用傅里叶变换近红外光谱技术并结合主成分分析(PCA)和最小二乘法支持向量机(LS-SVM)可作为一种可靠、准确、快速的检测方法用于黄酒酒龄定性鉴别分析。  相似文献   

9.
应用近红外光谱技术实现了油菜叶片中丙二醛(MDA)含量的快速无损检测.对90个油菜叶片样本进行光谱扫描,用60个样本建模,30个样本验证.经过平滑、变量标准化、一阶及二阶求导、去趋势等预处理后,建市了MDA预测的偏最小二乘法(PLS)模型.将PLS提取的有效特征变馈(LV)和连续投影算法(SPA)提取的有效波长作为最小二乘-支持向量机(LS-SVM)的输入变量,分别建立了LV-LS-SVM和SPA-LS-SVM模型.以预测集的预测相关系数(r),预测标准偏差(RMSEP)作为模型评价指标.结果表明,油菜叶片中MDA含量预测的最优模型为LV-LS-SVM模型,LV-LS-SVM在去趋势处理后的预测效果为r=0.999 9,RMSEP=0.530 2;在二阶求导处理后的预测效果为r=0.999 9,RMSEP=0.395 7.说明应用光谱技术检测油菜叶片中MDA的含最是可行的,并能获得满意的预测精度,为油菜大田生长状况的动态连续监测提供了新的方法.  相似文献   

10.
茶叶是我国重要的经济作物,对茶叶病害的及早发现与诊断,有利于农业生产者及时采取有效的防护措施.为了实现对茶叶病害的准确判别,采用叶绿素荧光光谱对茶叶的光谱特性展开研究.实验采集了健康茶叶样本90片,藻斑病轻度病害叶片90片,藻斑病重度病害叶片90片,并根据Kennard-Stone算法将样本数按3:1划分训练集和预测集...  相似文献   

11.
应用近红外漫反射光谱对猪肉肉糜进行定性定量检测研究   总被引:5,自引:0,他引:5  
利用傅里叶变换近红外漫反射光谱结合不同数学建模算法对不同部位取样的猪肉肉糜进行定性判别建模,并建立猪肉肉糜品质指标脂肪、蛋白质和水分含量的定量检测模型。结果表明:不同部位取样猪肉肉糜判别分析PLSDA模型性能良好,最优模型校正集判别正确率为100%,预测集判别正确率为96%;比较两种方法结合,不同光谱预处理建立各品质指标的定量模型,LS-SVM模型性能优于PLSR模型,脂肪和水分含量最佳预测模型校正及预测相关系数r均高于0.9,蛋白质含量最优模型校正及预测相关系数r,RMSEC,RMSEP和RMSECV分别为0.722,0.593,1.595,1.550和1.888,模型精度需进一步提高。研究表明利用傅里叶变换近红外漫反射光谱快速判别不同部位猪肉肉糜的方法是可行的,脂肪和水分含量定量分析模型从预测精度、稳定性及适应性考虑均具一定的通用性,具有良好的市场应用前景。  相似文献   

12.
氯化钠近红外光谱检测技术研究   总被引:1,自引:0,他引:1  
氯化钠(NaCl)近红外光谱分析在生物医学上有着重要的意义。钠离子(Na+)是人体血液中电解质的主要成分,而电解质有助于维持身体的酸碱平衡。采用近红外光谱技术测量氯化钠浓度,在分析钠离子近红外光谱检测机理的基础上,选定波长建立了NaCl浓度线性回归预测模型,同时为了减小温度对水吸收的扰动,使用选定光谱区建立偏最小二乘(PLS)非线性回归模型。结果表明所建立的非线性校正模型决定系数(R2)=99.82%,交叉验证均方误差(RMSECV)=14.5,剩余预测偏差(RPD)=23.7。完全满足日常生化检测精度要求,该技术可以应用于医院实验室钠离子浓度定量分析。  相似文献   

13.
近红外光谱法测定PDA中残留丙烯酰胺含量   总被引:1,自引:0,他引:1  
选取38份实验室自制二甲基二烯丙基氯化铵与丙烯酰胺的共聚物(PDA)为样品,用紫外光谱法对PDA中残留丙烯酰胺(AM)含量进行测定,并进行近红外光谱扫描,在图谱中选取七个波段,将每个波段的特征峰作为自变量,吸收峰作为因变量,采用偏最小二乘法(PLS)的数学转换方法建立近红外反射光谱(NIRS)定标模型,采用小波分析对光谱进行降噪处理,建立PDA中残留AM含量的近红外预测模型,并将预测值与紫外光谱法测定值进行比较,其外部验证决定系数达到0.99,预测分布趋势良好,对预测值与实测值进行t检验,结果显示预测值与实测值差异不显著。试验结果表明,采用近红外光谱数据建立的定标模型预测PDA中残留AM单体含量具有较高可行性。  相似文献   

14.
对近红外光谱数据进行小波变换,利用处理后的小波系数,采用偏最小二乘法预测了有机肥料中钾离子(K+)的含量,建立了小波变换与近红外光谱技术结合用于测定奶牛粪便为主的有机堆肥产品样品中无机钾离子测定的模型。结果表明: 小波变换充分提取了近红外光谱的信息,数据压缩为原始大小的3.6%,计算量大大减少;文章利用C4小波系数对48个有机肥料样本进行建模,对42个预示集样本进行预测,预示集的RMSEP(root mean square error of prediction)和r2(correlation coefficient)分别为0.113 8%和0.927,优于原始光谱直接建模的0.167 2%和0.835%。基于小波系数的模型优于传统的全谱模型,对于无机离子(K+)的测定可以取得较为准确的预测结果。  相似文献   

15.
将近红外光谱技术和化学计量学相结合分析慈竹纤维素结晶度。通过区间偏最小二乘法(iPLS)、联合区间偏最小二乘法(siPLS)和反向区间偏最小二乘法(biPLS)优化建模区域,建立经多元散射校正后光谱的结晶度分析模型,并与全光谱范围350~2 500nm建立的偏最小二乘(PLS)模型进行比较。结果表明,三种改进偏最小二乘法建立的结晶度模型预测效果均优于PLS模型,并且当采用联合区间偏最小二乘法将全光谱进行30个子区间划分,选择三个子区间[8 12 19]组合时,建立的siPLS模型预测效果最好,相关系数(r)达到0.88,预测标准差(RMSEP)为0.0117。因此,采用联合区间偏最小二乘法可以有效选择建模光谱区域,提高模型预测能力,实现慈竹纤维素结晶度的快速预测。  相似文献   

16.
花椒是我国的八大调味料之一。目前花椒市场掺假现象较为多见,为实现掺假花椒粉的快速定性鉴别,采用了近红外光谱结合化学计量学方法进行了探讨。将麦麸粉、稻糠粉、玉米粉和松香粉以1 Wt/Wt.%的递增梯度分别掺入红花椒粉和青花椒粉中,制备掺假浓度范围为1~54 Wt/Wt.%的掺假花椒粉样品,以掺假花椒粉和纯花椒粉共462份样品依次采集其800~2 500 nm范围的漫反射近红外光谱。采用主成分分析法(PCA)对光谱数据进行分析,前3个主成分累计贡献率达98.72%,做出的得分图表明PCA法对掺假的花椒粉具有较好的区域划分。347份样本作为校正集,以特征谱区2 000~2 200 nm范围的257个采样点的光谱信号作为输入,采用判别偏最小二乘法(DPLS)和支持向量机(SVM)建立定性鉴别模型,经不同光谱预处理,对115份验证集样本进行预测,总体鉴别正确率在97.39%~100%之间,表明该方法是快速定性鉴别掺假花椒粉的一个有效手段。  相似文献   

17.
近红外光谱的河蟹新鲜度快速检测研究   总被引:1,自引:0,他引:1  
河蟹的新鲜度是大多数消费者在购买时所考虑的最重要的因素,挥发性盐基氮(TVB-N)是当前国际通用的评价肉类新鲜度的指标,但其检测工序繁琐、耗费时间长,无法满足当前市场对河蟹新鲜度评价的迫切需求。因此,建立一种快速检测河蟹新鲜度的方法是当前急需解决的一大难题。将购于水产市场的河蟹,采用聚乙烯充氧袋快速运至实验室,样本数共126只。在洁净的工作台上处理后,将螃蟹分为42个实验样品,每个样品3只鲜活螃蟹;42个实验样品放在低温4℃的恒温生化培养箱中贮藏,每天从培养箱中按时取出6个螃蟹样品进行光谱数据采集及新鲜度指标TVB-N的测定,历时7 d。采用近红外光谱(NIRS)对贮藏在不同时间下的河蟹新鲜度进行评价,使用挥发性盐基氮(TVB-N)作为评价河蟹新鲜度的指标,首先通过比较经五折交叉验证(5-fold CrossValidation)算法、 kennard-stone(KS)算法、光谱-理化值共生距离(SPXY)算法三种样本划分方法处理后所建模型的预测效果确定最优样本划分方法,最终采用五折交叉验证(5-fold CrossValidation)算法对样本进行划分。其中的32个样品被划分为训练集进行模型构建,其余的10个样品被划分为测试集用于模型检验。然后在经过五折交叉验证法对样本进行划分的基础上,分别采用小波变换(WT)、 Savitzky-Golay平滑、一阶导数法(Db1)、二阶导数法(Db2)这4种单一算法以及小波变换(WT)与Savitzky-Golay平滑相结合的算法进行预处理,通过比较预处理后所建模型的预测效果,确定了小波变换(WT)预处理为最优光谱预处理方法,从而消除了光谱中的无用信息并提高了信噪比。再次,在WT预处理的基础上,分别采用主成分分析(PCA)法和连续投影(SPA)算法提取光谱特征波段,通过建模比较确定主成分分析(PCA)法为最优波长选择方法,以所选的16个特征波长作为模型的输入,不仅提高了模型的运行速度还可以提高模型的稳定性。最后,在经过PCA特征提取后,分别采用偏最小二乘回归(PLSR)算法和多元线性回归(MLR)算法构建TVB-N定量预测模型,通过比较两种模型的预测效果,确定了偏最小二乘回归(PLSR)模型为最优建模方法,最终确定的最优模型为基于WT-PCA-PLSR建立的模型,模型预测决定系数R^2为0.89,预测均方根误差RMSEP为3.00。综上所述,所建立的预测模型具有较高的精度,可以实现对河蟹新鲜度的快速检测,具有较好的市场应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号