首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
水果表面农药污染的可见/近红外光谱识别法   总被引:2,自引:0,他引:2  
以表面经过喷施不同浓度农药后的脐橙为研究对象,采用可见/近红外漫反射光谱技术定性检测脐橙农药污染的程度。采集脐橙350~1800nm范围的光谱。应用多元散射校正(MSC),标准正态变量(SNV)变换,一阶微分和二阶微分四种不同预处理方法,分别在430~1000nm、10001800nm和430~1800nm三个光谱范围内建立识别脐橙污染程度的偏最小二乘法(PLS)数学模型。比较分析得出试验结果:波谱范围取430~1000nm,采用一阶微分的预处理方法时应用PLS校正方法的结果最优,其预测值和真实值之间的相关系数和预测均方根误差分别为0.9830和0.1482。研究结果袁明。可见/近红外漫反射光谱技术可以定性检测脐橙的农药污染程度。  相似文献   

2.
针对哈密瓜表面农药残留化学检测方法成本高且具有破坏性等问题,探索了可见-近红外(Vis-NIR)光谱技术对农药残留定性判别的可行性。以哈密瓜为载体,百菌清和吡虫啉农药为研究对象,采集哈密瓜表面无残留、百菌清和吡虫啉残留的可见-近红外漫反射光谱,利用格拉姆角场(GAF)将一维光谱数据转换为二维彩色图像,构建GAF图像数据集。设计一种包含Inception结构的多尺度卷积神经网络模型用于哈密瓜表面农药残留种类判别,包括1层输入层、3层卷积层、1层融合层、1层平坦层、2层全连接层和1层输出层。模型测试混淆矩阵结果表明,格拉姆角差场(GADF)变换对哈密瓜表面农药残留的可见-近红外光谱表达能力较强。此外,构建AlexNet、VGG-16卷积神经网络(CNN)模型和支持向量机(SVM)、极限学习机(ELM)机器学习模型与提出的多尺度CNN模型进行性能对比。结果表明,3种CNN模型对哈密瓜表面有无农药残留的判别效果较好,综合判别准确率均高于SVM和ELM模型。对比3种CNN模型性能,多尺度CNN模型的性能最佳,训练耗时为14 s,综合判别准确率为98.33%。多尺度CNN模型结构利用多种小尺寸滤波器组合(1×1,3×3和5×5)和并行卷积模块,能够捕获不同层次和尺度的特征,通过级联融合模式进行深度特征融合,提高了模型的特征提取能力。与传统深度CNN模型相比,在保证计算复杂度不变的情况下,多尺度CNN模型的精度得到了有效提高。实验结果表明,GADF变换结合多尺度CNN模型可以有效进行光谱数据解析,利用可见-近红外光谱技术可以实现哈密瓜表面农药残留的定性判别。研究结果为大型瓜果表面农药残留的快速无损检测技术的研发提供了理论参考。  相似文献   

3.
有机磷农药毒死蜱是目前农业生产中使用最广泛的农药之一,但有机磷农药过度使用导致的农药残留却给自然环境和人类生命健康造成严重威胁,因此,开发一种快捷、准确、经济的毒死蜱农药在农产品表面残留的直接检测方法意义重大。配制4组不同体积浓度(1∶200, 1∶500, 1∶800, 1∶1 000)的毒死蜱农药溶液,对照组为纯净水,分别浸泡甘蓝叶片3 min,每组采集30个叶片样本,5组共计150个样本。采用可见近红外光谱仪获取其谱图信息,然后开展不同浓度毒死蜱农药在甘蓝叶片上残留的可见近红外光谱定性分析研究。建模时,将每组数据中24个样本,5组共计120个样本作为建模训练集,剩下每组6个样本,5组共计30个样本作为预测集。鉴于甘蓝叶面不平整、皱褶较多,叶片颜色深浅不一等因素会给近红外光谱分析带来干扰,给预测模型的建立增加难度,提出一种光谱全波段平均分组积分(求和)预处理方法,将光谱波段平均分成n组,再对分组后每组数据积分求和,用预处理后的数据训练BP神经网络。实验表明,光谱全波段平均分组积分(求和)预处理方法,对光谱反射率一阶导数(FD)且分组数为25的神经网络训练效果最好,建模集识别准确率为97.50%,预测集识别准确率为96.67%,建模效果优于通常采用的提取光谱敏感、特征波段建模方法(建模集识别准确率为91.67%)。光谱全波段平均分组积分预处理方法在保留光谱数据更多特征波段的同时探索更多潜在敏感波段,能够降低光谱数据维度,减小单个光谱数据噪声对建模效果的影响,选择合适的分组数n,能取得较好的建模预测效果。  相似文献   

4.
基于可见-近红外光谱的可乐品牌鉴别方法研究   总被引:6,自引:5,他引:1  
提出了一种采用可见-近红外光谱分析技术快速鉴别可乐品牌的新方法。采用美国ASD公司的便携式光谱仪对三种不同品牌的可乐进行光谱分析,各获取55个样本数据。将样本随机分成150个建模样本和15个预测样本,采用平均平滑法和标准归一化方法对样本数据进行预处理,再用主成分分析法对光谱数据进行聚类分析并获得各主成分数据。将建模样本的主成分数据作为BP网络的输入变量,可乐品牌作为输出变量,建立三层人工神经网络鉴别模型,并用模型对15个预测样本进行预测。结果表明,预测准确率为100%,实现了可乐品牌快速、准确的鉴别。  相似文献   

5.
基于可见-近红外光谱的咖啡品牌鉴别研究   总被引:1,自引:4,他引:1  
利用可见-近红外光谱技术对市场上三种不同品牌咖啡品种进行鉴别。分别采用主成分分析法与BP神经网络结合和小波变换与BP神经网络结合两种组合模型进行分析预测。利用主成分分析法与小波变换的数据压缩功能和BP神经网络的学习预测能力实现对不同品牌咖啡的鉴别。实验采用3个品种共60个样本建立模型,30个样本进行品种鉴别,结果表明,两种鉴别模型的咖啡品种鉴别率均为100%。同时也表明,小波变换用于数据压缩无论是在压缩时间上还是在压缩能力上都优于主成分分析法。说明通过小波变换和BP神经网络相结合建立模型进行不同品牌咖啡鉴别具有分析速度快,鉴别能力强的特点,为快速鉴别纯品咖啡提供了新的方法,同时也为确定不同品牌咖啡选用咖啡豆品种奠定了基础。  相似文献   

6.
可见-近红外光谱用于鉴别山羊绒与细支绵羊毛的研究   总被引:3,自引:1,他引:2  
近红外光谱作为快速、无损的检测技术,近年来在国内外越来越受到广泛关注。针对山羊绒与细支绵羊毛的可见/近红外光谱的特点,提出了应用主成分分析(PCA)结合人工神经网络(ANN)进行山 羊绒与细支绵羊毛的鉴别,并建立了羊毛、羊绒分析模型。应用可见/近红外反射光谱获取山羊绒与细支绵羊毛的光谱曲线,利用主成分分析对原始光谱数据进行处理,根据主成分的累计贡献率99.8%选 取主成分数6,并将所选取的6个主成分作为三层BP神经网络的输入。通过定标集样本对BP神经网络进行训练,用优化的BP神经网络模型对预测集样本进行预测。实验结果表明,16个未知样本的鉴别全部 正确,表明可见/近红外光谱结合主成分分析和神经网络技术对山羊绒与细支绵羊毛进行快速鉴别是可行的。  相似文献   

7.
可见-近红外漫反射光谱技术对羊毛和羊绒的鉴别研究   总被引:1,自引:0,他引:1  
应用可见-近红外漫反射光谱技术对甘肃不同地区的130个羊毛和羊绒样品进行定性鉴别研究。结果表明:采用主成分-马氏距离聚类判别分析法,羊毛和羊绒样品界线;主成分回归分析技术结合多元离散校正、一阶导数等预处理方法,以及最佳主成分因子为8、不确定因子为1.00等参数,建立的定性鉴别模型预测性能较好,外部验证正确率为100%。说明利用可见-近红外漫反射光谱定性分析技术可以快速鉴别羊毛和羊绒。  相似文献   

8.
因可见-近红外波段反射光谱测试方便,仪器成本较低,适用于在线分析,为此针对煤在可见-近红外波段的反射光谱曲线特征规律及其产生机理进行了研究分析。从晋、鲁、宁、吉地区煤矿收集了无烟煤、烟煤、褐煤三大类型中的12种典型煤样,按煤阶从高到低具体包括无烟煤一号、无烟煤二号、贫煤、贫瘦煤、瘦煤、焦煤、肥煤、1/3焦煤、气肥煤、气煤、褐煤一号、褐煤二号,在实验室利用地物光谱仪采集了块状煤样在可见-近红外波段的反射光谱曲线。通过对光谱曲线特征分析,发现无烟煤的反射光谱曲线整体上趋于水平方向,吸收谷特征不明显,随煤阶的降低,光谱反射率、近红外波段光谱斜率整体上呈增加趋势,较明显的吸收谷特征增多且吸收强度增加,有13个较明显的吸收谷特征波段。通过X射线衍射分析(XRD)测定了煤样的碳材料结构和矿物成分,煤非晶质性分子结构的芳构化趋势对煤阶升高时光谱反射率降低、反射曲线趋于平缓起到主要作用。当煤阶降低时,以脂肪侧链为主的有机吸收基团的中红外波段基频在近红外波段的倍频和合频产生众多吸收叠加,绝大多数吸收谷特征不明显,相对较为明显的吸收谷产生在1 700和2 300 nm附近。同时含Fe等过渡金属的矿物、H2O、粘土矿物等无机物成分也是煤反射光谱曲线吸收谷特征增多的因素。通过对实验煤样X射线荧光分析(XRF)和工业分析测定了煤样中Fe和Al等矿物元素成分含量和空气干燥基水分、灰分、挥发分、固定碳含量,得出煤反射光谱曲线的近红外波段光谱斜率与挥发分产率、固定碳含量分别呈正、负相关性。H2O谱带吸收深度之和与内在水分含量线性相关性较好,Fe和Al含量与相关波段吸收谷深度之和基本呈线性关系,而主要由有机基团倍频和合频所产生的1 700和2 300 nm附近两处吸收谷深度之和与挥发分产率线性相关性较差。获得典型块状煤种的可见-近红外波段反射光谱特征,为煤矿区高光谱遥感以及煤光谱数据库的建立提供依据,也为直接利用可见-近红外波段的反射光谱曲线波形特征快速、低成本、定性地识别煤种类提供参考;同时对煤矿用煤炭探测光谱传感器的研制具有重要意义。  相似文献   

9.
为客观、有效对古陶瓷进行无损断代,提出了一种基于可见-近红外光谱古陶瓷断代分类识别方法。耀州窑古陶瓷跨代较多,且不同朝代之间具有物理相似性,因此耀州窑的断代具有一定的挑战性。以耀州窑为研究对象,在采用紫外-可见-近红外光谱分析仪获取古陶瓷不同朝代的多光谱数据的基础上,提出基于分数阶微分对光谱数据进行预处理,避免微分预处理常用的一阶微分和二阶微分遗漏中间过渡信息,同时压制并消除光谱数据中的背景信息和噪声干扰。实验结果表明,未进行微分处理(0阶)时,耀州窑不同年代古陶瓷的分类准确率仅为84.8%,而基于不同分数阶微分的分类准确率均较0阶明显高,分数阶微分的最优阶数为0.7阶。另外,提出基于深度信念网络对不同朝代古陶瓷进行断代分类,首先采用层叠的受限玻尔兹曼机(RBM)对深度网络进行预训练,提取光谱数据高层特征以消除光谱数据中的冗余特征。实验结果表明,光谱数据经RBM降维之前特征间的相关系数为0.885 7,经第一层和第二层RBM降维后的相关系数分别为0.544 6和0.391 5,特征间的相关性明显下降,冗余度明显减少。然后将RBM预训练得到的权值参数对BP神经网络进行初始化,并对深度信念网络进行微调,在克服BP神经网络因随机初始化权值参数而陷入局部最优局限性的同时,提升网络训练主动性。实验可得,深度信念网络的最优RBM数量为2,RBM隐藏层最优节点数为100。最后,为避免小样本数据基于深度信念网络进行训练易出现过拟合,提出了一种Dropout随机丢弃策略,在深度信念网络训练阶段以一定概率随机让网络某些隐含层节点的权重不工作,以减少网络训练过程特征之间的相互依赖性,实验可得当Dropout丢弃比例为0.45时,分类性能最高。采用所提方法,耀州窑不同朝代古陶瓷分类的平均准确率为93.5%,而耀州窑五代时期的分类识别率最高为96.3%。通过与同类古陶瓷断代分析方法的客观定量对比,表明所提方法有效、可行,为古陶瓷的断代提供了新方法。  相似文献   

10.
基于可见-近红外光谱分析的圆白菜与杂草识别研究   总被引:1,自引:0,他引:1  
杂草的自动识别是实现作物草害精准施药的基础。利用ASD光谱仪采集两个品种的圆白菜及稗草、狗尾草、马唐、牛筋草和小藜等五种杂草在350~2 500nm波段内的冠层光谱反射率。根据光谱曲线特征,在不同波段内对数据进行不同程度的压缩,以提高运算效率;利用不同参数设置的Savitzky-Golay(SG)卷积平滑求导和多元散射校正方法(MSC)的不同顺序组合对光谱去噪,然后结合主成分分析法(PCA)提取主成分,建立模型,最后利用簇类的独立软模式(SIMCA)分类法对各种植物进行分类,并比较分类结果。试验结果显示利用MSC与3阶5次21点SG相结合的方法对光谱数据预处理后,运用PCA提取前10个主成分作为分类模型的输入变量,取得了100%的分类正确率,能够快速无损地识别圆白菜与几种常见杂草。  相似文献   

11.
转基因水稻及其亲本叶片的可见/近红外光谱分析   总被引:1,自引:0,他引:1  
应用可见/近红外光谱技术实现了转基因水稻叶片的快速识别和叶绿素含量(SPAD)的快速检测。建立偏最小二乘-支持向量机(LS-SVM)鉴别模型,校正集的正确率为100%,同时应用连续投影算法(SPA)提取有效波长,建立SPA-LS-SVM鉴别模型,只用了全变量的0.3%进行建模,其预测集的正确率达到87.27%。在定量分析中,各模型的最优结果均来自经过正交信号校正(OSC)的光谱数据,经过SPA处理后的模型均优于最优的全波段PLS模型,说明SPA是一种有效的波长选择方法。最优SPAD值预测模型为SPA-LS-SVM,其相关系数(r)和预测均方根误差(RMSEP)分别为0.902 2和1.312 1,获得了满意的结果。这说明提出的SPA-LS-SVM方法能快速识别转基因水稻叶片并对SPAD值进行准确预测,为实现大田活体鉴别与连续监测提供了新方法。  相似文献   

12.
花生种子品质的可见-近红外光谱分析   总被引:3,自引:0,他引:3  
利用600~1 100 nm波段研究花生品种的可见-近红外反射光谱,对选取的三种具有代表性的花生种子进行实验。使用近红外光纤光谱仪采集光谱数据,对原始光谱进行小波分析以提取光谱特征,再用主成分分析方法进行聚类分析,最后把每一个样品的前4个主成分得分作为识别模型的输入,品种类别作为模型的输出,以马氏距离作为判别函数,建立了线性判别分析模型。对于每个品种的50个样品,随机挑选30个样本作为训练集,剩余的20个样本作为预测集。该识别模型对3个花生品种的平均正确识别率为95%。表明该方法能有效的识别花生种子,得到较好的分类效果,为花生种子品质的区分和鉴别提供了一种新方法。  相似文献   

13.
基于可见/近红外光谱分析技术的猪肉肉糜品质检测研究   总被引:2,自引:0,他引:2  
以225个猪肉肉糜样本为研究对象,利用可见/近红外光谱分析技术对猪肉肉糜主要品质指标的的快速检测进行了研究.光谱经小波去噪后,采用偏最小二乘法和支持向量机定量分析方法分别建立了肉糜中肌内脂肪、蛋白质和水分含量的可见/近红外光谱预测模型.其中,肌内脂肪的支持向量机定量预测模型最优,校正相关系数rcal和预测相关系数rva...  相似文献   

14.
基于可见/近红外光谱技术的番茄叶片灰霉病检测研究   总被引:2,自引:1,他引:2  
利用可见/近红外光谱技术对感染灰霉病的番茄叶片感染程度进行了检测。提出了主成分分析结合BP神经网络的数据处理方法。采用主成分分析进行数据的降维,减少了计算量,提高了建模精度。通过主成分分析中的载荷值,定性地分析了不同波段对病害程度检测的重要性。将得到的最主要的几个主成分输入BP神经网络进行建模,预测结果显示,当主成分数为8,隐含层结点数为11的时候,病害程度的检测模型对未知样本预测的相关系数达到0.930,SEP为0.068 7,模型具有良好的检测效果。说明基于光谱技术和化学计量学方法的灰霉病检测模型具有很好的检测能力,为光谱技术应用于病害检测提供了新的方法。  相似文献   

15.
可见与近红外波段光谱反射率数据库是颜色科学与技术和遥感目标地物分类识别领域等研究与应用的基础数据。主成分分析(PCA)在光谱数据分析、光谱重建、高光谱数据降维以及遥感图像分类等方面有广泛应用。测量并建立了云南公园常见绿化植物柳树、樟、红花檵木、蓝花楹等48种植物150条叶片从可见光到近红外波段光谱反射率数据库,波长范围400~1 000 nm、间隔4 nm。并且分别对可见与可见到近红外两种波段范围进行PCA研究。结果表明:不同植物叶片按照红、绿、黄相同色相的光谱反射率曲线基本相似;但对于同一种植物,在可见光波段400~700 nm,因为体内叶绿素、叶黄素、叶红素和花青苷含量的不同,光谱反射率曲线有较大的差异;在近红外波段700~1 000 nm,所有植物叶片光谱反射率仅仅是大小不同,而同一植物光谱反射率基本不随波长变化。PCA分析表明:在可见光和可见与近红外波段前三个主成分的累积贡献率分别达到98.62%和94.97%。数据库及其PCA分析结果将为自然物体光谱重建、多光谱成像技术和遥感目标地物分类识别等领域应用提供支撑。  相似文献   

16.
一种基于可见-近红外光谱快速鉴别茶叶品种的新方法   总被引:26,自引:11,他引:26  
提出了一种用可见-近红外光谱技术快速无损鉴别茶叶品种的新方法。应用可见-近红外光谱仪测定5个品种茶叶的光谱曲线,用主成分分析法对不同品种茶叶进行聚类分析并获得茶叶的可见-近红外光谱数据的主成分,再结合人工神经网络技术建立模型进行品种鉴别。主成分分析表明,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类茶叶具有较好的聚类作用,可以定性分析茶叶种类。把主成分分析得到的前6个主成分作为神经网络的输入,茶叶品种值作为神经网络的输出,通过5个茶叶品种共125个样本的训练和学习,建立了茶叶品种鉴别的3层BP人工神经网络模型,对未知的25个样本进行鉴别,品种识别准确率达到100%。说明本文提出的方法具有很好的分类和鉴别作用,为茶叶的品种快速鉴别提供了一种新方法。  相似文献   

17.
鹅绒和鸭绒的外观相似但在品质上鹅绒优于鸭绒,各国羽绒毛标准对鹅绒毛中的鸭绒毛含量都有最高限定。传统检测方法为高倍显微镜目测法,该方法劳动强度大,且不适宜大批量样本的分析及现场快速检测。利用可见/近红外光谱结合连续投影算法(SPA)特征波长选择的建模方法对鹅绒中混有鸭绒含量进行了定量检测。在450~930nm范围内,通过SPA选择的8个特征波长建立多元线性回归模型,取得了较好的预测结果,相关系数为0.983,校正均方根误差(RMSEC)为5.44%,预测均方根误差(RMSEP)为5.75%,有望用于羽绒毛品质的快速检测。  相似文献   

18.
装饰纸作为现代家居产品中必不可少的重要饰面材料之一,不仅具有良好的装饰效果,还可以大大地改善材料的表面性能。然而,装饰纸外观质量的控制(如色差的评价和控制),仍然是制约装饰纸产业发展的重要因素之一。利用人眼来判别和控制往往因人而异,偏主观而非客观。因此,寻找一种客观、有效的方法来代替人的视觉感官来快速判别具有重要意义。本研究利用可见光光谱结合主成分分析法对不同类别装饰纸进行了模式识别分类研究,探讨了该技术的可行性。结果表明:(1)可见光光谱与表征装饰纸表面视觉特性的参数之间呈现出显著的相关性,相关系数都达到了0.85以上,多数均达到0.99,说明可见光光谱中包含有描述装饰纸表面视觉特征的参数;(2)利用装饰纸表面的可见光光谱结合主成分分析方法所建立的模式识别模型,对不同装饰纸表面视觉特征类型进行模式识别时,正确率达到94%~100%,说明可见光光谱分析技术有潜力成为装饰纸表面视觉特征快速、客观、有效识别和分类的新技术。  相似文献   

19.
提出了一种采用近红外光谱技术结合人工神经网络对玉米品种进行鉴别的方法。在3 800~10 000 cm-1(波长1 000~2 632 nm)范围内采集四种玉米单粒完整籽粒的近红外漫反射光谱,经Savitky-Golay平滑和多重散 射校正预处理后,对数据进行主成分分析,再结合人工神经网络技术进行品种鉴别。主成分分析表明,前8个主成分的累积贡献率达到99.602%。以前8个主成分作为网络输入,品种类型作为输出,建立三层LMBP神经网络模型。每个品种 各取30粒共120个样本用于建模,10粒共40个样本用于预测。模型对建模集120个样本鉴别率为100%,对预测集40个样本的鉴别率为95%。实验结果说明该方法能快速无损地鉴别玉米品种,为玉米的品种鉴别提供了一种新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号