首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A weakly biased normal-metal-superconductor junction is considered as a potential device injecting entangled pairs of quasi-particles into a normal-metal lead. The two-particle states arise from Cooper pairs decaying into the normal lead and are characterized by entangled spin- and orbital degrees of freedom. The separation of the entangled quasi-particles is achieved with a fork geometry and normal leads containing spin- or energy-selective filters. This solid state entangler is characterized by noise cross-correlations which are identical to the noise in one lead, a signature consistent with entanglement. A connection to Bell-type experiments is envisioned (cond-mat/0009193). Received 20 September 2001  相似文献   

2.
We propose a spin-independent scheme to generate and detect two-particle entanglement in a mesoscopic normal-superconductor system. A superconductor, weakly coupled to the normal conductor, generates an orbitally entangled state by injecting pairs of electrons into different leads of the normal conductor. The entanglement is detected via violation of a Bell inequality, formulated in terms of zero-frequency current cross correlators. It is shown that the Bell inequality can be violated for arbitrary strong dephasing in the normal conductor.  相似文献   

3.
We study the entanglement degree of electron pairs emitted from an s-wave superconductor, which couples to two normal leads via a single-level quantum dot. Within the framework of scattering matrix theory, the concurrence is used to quantify the entanglement. And the result shows that the entanglement degree is generally influenced by the initial separation of the two electrons in a Cooper pair and the normal transmission eigenvalues T1, T2. But it is only determined by the eigenvalues in the tunnelling limit, T1,T2?1, what is more, it is measurable.  相似文献   

4.
We investigate entanglement of electrons and positrons produced via absorption by a vacuum of two or several photons from two external electromagnetic waves. The waves are modelled by finite-length focused pulses. Structures of the arising electron and positron wave packets are investigated in the momentum and coordinate representations. Conditional and unconditional widths of these wave packets, as well as the Schmidt number K are found, and they are used to evaluate the degree of entanglement. The conditions are found when entanglement is large. It is shown that the highest entanglement can be reached at nonrelativistic energies of electrons and positrons. Possibilities of observing the entanglement effects in experiments on pair production are discussed.  相似文献   

5.
We present numerical investigations of the transmission properties of electrons in a normal quantum wire tangentially attached to a superconductor ring threaded by magnetic flux. A point scatterer with a δ -function potential is placed at node to model scattering effect. We find that the transmission characteristics of electrons in this structure strongly depend on the normal or superconducting state of the ring. The transmission probability as a function of the energy of incident electrons, in the case of a superconductor ring threaded by one quantum magnetic flux, emerges one deep dip, imposed upon the first broad bump in spectrum. This intrinsic conductance dip originates from the superconductor state of the ring. When increasing the magnetic flux from one quantum magnetic flux to two, the spectrum shifts toward higher energy region in the whole. This conductance dip accordingly shifts and appears in the second bump. In the presence of a point-scatterer at the node, the spectrum is substantially modified. Based on the condition of the formation of the standing wave functions in the ring and the broken of the time-reserve symmetry of Schr?dinger equation after switching magnetic flux, the characteristics of transmission of electrons in this structure can be well understood. Received 6 November 2001  相似文献   

6.
We propose a scheme based on using the singlet ground state of an electron spin pair in a double-quantum-dot nanostructure as a suitable setup for detecting entanglement between electron spins via the measurement of an optimal entanglement witness. Using time-dependent gate voltages and magnetic fields the entangled spins are separated and coherently rotated in the quantum dots and subsequently detected at spin-polarized quantum point contacts. We analyze the coherent time evolution of the entangled pair and show that by counting coincidences in the four exits an entanglement test can be done. This setup is close to present-day experimental possibilities and can be used to produce pairs of entangled electrons "on demand."  相似文献   

7.
We review the mesoscopic transport in a diffusive proximity superconductor made of a normal metal (N) in metallic contact with a superconductor (S). The Andreev reflection of electrons on the N–S interface is responsible for the diffusion of electron pairs in N. Superconducting-like properties are induced in the normal metal. In particular, the conductivity of the N metal is locally enhanced by the proximity effect. A re-entrance of the metallic conductance occurs when all the energies involved (e.g. temperature and voltage) are small. The relevant characteristic energy is the Thouless energy which is divided by the diffusion time for an electron travelling throughout the sample. In loop-shaped devices, a 1 / T temperature-dependent oscillation of the magnetoresistance arises with a large amplitude from the long-range coherence of low-energy pairs.  相似文献   

8.
We analyze the full counting statistics (FCS) of a single-site quantum dot coupled to multiple metallic electrodes in the normal state and a superconductor for arbitrary transmission. We present an analytical solution of the problem taking into account the full energy dependence of the transmission coefficient. We identify two transport processes as sources of entanglement between the current carriers by observing positive cross current correlations. Furthermore, we consider ferromagnetic electrodes and show how they can be used as detectors in experiments violating the Bell-Clauser-Horne-Shimony-Holt inequality.  相似文献   

9.
We consider a normal–superconducting junction in order to investigate the effect of new physical ingredients on waiting times. First, we study the interplay between Andreev and specular scattering at the interface on the distribution of waiting times of electrons or holes separately. In that case the distribution is not altered dramatically compared to the case of a single quantum channel with a quantum point contact since the interface acts as an Andreev mirror for holes. We then consider a fully entangled state originating from splitting of Cooper pairs at the interface and demonstrate a significant enhancement of the probability to detect two consecutive electrons in a short time interval. Finally, we discuss the electronic waiting time distribution in the more realistic situation of partial entanglement.  相似文献   

10.
We consider a normal–superconducting junction in order to investigate the effect of new physical ingredients on waiting times. First, we study the interplay between Andreev and specular scattering at the interface on the distribution of waiting times of electrons or holes separately. In that case the distribution is not altered dramatically compared to the case of a single quantum channel with a quantum point contact since the interface acts as an Andreev mirror for holes. We then consider a fully entangled state originating from splitting of Cooper pairs at the interface and demonstrate a significant enhancement of the probability to detect two consecutive electrons in a short time interval. Finally, we discuss the electronic waiting time distribution in the more realistic situation of partial entanglement.  相似文献   

11.
With the surge of research in quantum information, the issue of producing entangled states has gained prominence. Here, we show that judiciously bringing together two systems of strongly interacting electrons with vastly differing ground states-the gapped BCS superconductor and the Luttinger liquid-can result in quantum entanglement. We propose three sets of measurements involving single-walled metallic carbon nanotubes which have been shown to exhibit Luttinger liquid physics, to test our claim and as nanoscience experiments of interest in and of themselves.  相似文献   

12.
The simultaneous emission of two electrons in photoionization, or in the non-radiative spontaneous decay of an inner-shell vacancy, are two of the best known examples of the failure of the independent-particle model of atoms and molecules. The later of these provides also one of the two competitive processes, following inner-shell photoionization, for producing three flying electrons which can, for example, be used in implementing many protocols hitherto developed in quantum information. The correlation properties of the three-particle system consisting of these two electrons plus the photoelectron are analyzed using methods from quantum information theory. The entanglement of the consequent tripartite spin-state is shown to be completely independent of the mechanism(s) which may be responsible for the emission of these three electronic qubits in two different steps in the absence of spin-orbit interaction. Our analysis shows that the tripartite state formed in the present case is more like a  |W〉  class of states possessing pairwise entanglement. The experimental characterization of these states is fully achieved merely by the measurements of the energies of three flying electrons, without requiring any entanglement witness or other similar protocols hitherto developed in quantum information. Changes in these entanglement properties of a tripartite state of electronic qubits on the inclusion of the spin-orbit interaction have also been discussed.  相似文献   

13.
We present an entanglement concentration protocol for electrons based on their spins and their charges. The combination of an electronic polarizing beam splitter and a charge detector functions as a parity check device for two electrons, with which the parties can reconstruct maximally entangled electron pairs from those in a less-entanglement state nonlocally. This protocol has a higher efficiency than those based on linear optics and it does not require the parties to know accurately the information about the less-entanglement state, which makes it more convenient in a practical application of solid quantum computation and communication.  相似文献   

14.
In a device with a superconductor coupled to two parallel quantum dots (QDs) the electrical tunability of the QD levels can be used to exploit nonclassical current correlations due to the splitting of Cooper pairs. We experimentally investigate the effect of a finite potential difference across one quantum dot on the conductance through the other completely grounded QD in a Cooper pair splitter fabricated on an InAs nanowire. We demonstrate that the nonlocal electrical transport through the device can be tuned by electrical means and that the energy dependence of the effective density of states in the QDs is relevant for the rates of Cooper pair splitting (CPS) and elastic cotunneling. Such experimental tools are necessary to understand and develop CPS-based sources of entangled electrons in solid-state devices.  相似文献   

15.
We present a proposal for the experimental observation of energy-time entanglement of quasiparticles in mesoscopic physics. This type of entanglement arises whenever correlated particles are produced at the same time and this time is uncertain in the sense of quantum uncertainty, as has been largely used in photonics. We discuss its feasibility for electron-hole pairs. In particular, we argue that junctions between materials in which electrons and holes, respectively, propagate ballistically and behave as "entanglers" for energy-time entanglement when irradiated with a continuous laser.  相似文献   

16.
We investigate the evolution of entanglement between two magnetic moments which are initially independent and interact with electron current tunneling through them. The magnetic moments may be nanomagnets, magnetic atoms or atom clusters with spins larger than \frac12\frac{1}{2}. The tunneling of electrons through two moments can be realized by equally coupling two leads (electron reservoirs) to them and applying bias voltage to the leads. In the sequential regime the effect of electron current on the entanglement is calculated fully quantum-mechanically by using extended scattering-matrix theory. It is found that under certain conditions the entanglement can be enhanced from zero to unity by applying the current. We investigate the dependence of the entanglement on the interaction strength and the value of the moments. We discuss the favorite conditions for the realization of entangling gates using such setup.  相似文献   

17.
Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.  相似文献   

18.
徐庆君  张士英 《中国物理 B》2009,18(10):4117-4121
We have studied entanglement evolution and transfer in a double Tavis--Cumming model where two pairs of entangled two-level atoms AB and CD interact with two single-mode cavity fields a and b. We show that the Bell-like initial state of atoms AB can exhibit entanglement sudden death which should be independent of the initial entanglement of atoms CD. Also, we show that the initial entanglement of one atomic pair can be transferred into another pair, as well as the possible subsystems, that become entangled during evolution.  相似文献   

19.
In an early study the BCS wave function was generalized to include the motion of the center-of-mass of Cooper pairs. An alternative order parameter can be defined on the basis of this motion. In later work, when in copper oxides Bloch orbitals replaced free electrons, nodes were found in the vector space of the Fourier representation of the order parameter. Here that Fourier representation has suggested that the parameter consists of two components, a long wave lengths part which does not contain nodes, a short wave length part which does. The former component is real, and applies deep inside the superconductor, the latter, which is imaginary, in the boundary region. Further, the imaginary component has odd symmetry about the nodal axis. There results an addition of about 0.93π to the relative phase of two adjacent sides of a square superconductor cut along appropriate crystal axis, and embedded in a normal metal.  相似文献   

20.
最近研究表明利用环境噪声的互相关可以恢复两点之间的时域格林函数(声脉冲响应),这一原理在文献中被称为格林函数恢复。基于此原理,通过对多个传声器所接收的环境噪声进行互相关处理,获取与散射体相关联的散射波的到达时延信息,结合最小二乘反演算法和改进克希霍夫移位算法,分别获得道路交通噪声场中石柱以及海浪噪声场中塑料桶的空间位置,且其估计结果与实际测量相一致。实验结果表明将环境噪声作为探测信号进行散射体无源成像是可行的。这为设计室内无源声监测系统以及通过海洋环境噪声实现对水中静默目标成像提供了新思路和有益参考。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号