首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multivariate methods were used to identify relationships between bacterial attachment (biofouling potential), water transport, and the surface properties of nine modified polysulfone (MPS) membranes comprising blends of polysulfone (PS) with a sulfonated polyether-ethersulfone/polyethersulfone block copolymer. The topology of the microporous MPS membranes, including surface roughness, surface height, pore size and pore geometry were determined by atomic force microscopy (AFM) and digital image analysis. Other measurements included relative surface hydrophobicity by captive bubble contact angle, surface charge (i.e., degree of sulfonation) by uranyl cation binding, wt% solids, porosity, membrane thickness, water flux, and the affinity of membranes for a hydrophilic Flavobacterium and hydrophobic Mycobacterium species. The mycobacteria attached best to the MPS membranes, but the attachment of both organisms was inversely correlated with the mean aspect ratio of pores, suggesting that irregular or elliptic pores discouraged attachment. Multivariate regression analyses identified the pore mean aspect ratio, mean surface height, PS content, and the n-methylpyrrolidone+propionic acid (NMP–PA) solvent concentration as influential factors in Mycobacterium attachment, whereas membrane thickness, surface roughness, pore mean aspect ratio, porosity, and the mean pore area/image area ratio influenced Flavobacterium attachment. Cluster analyses revealed that Mycobacterium attachment was associated with hydrophobic determinants of the MPS membranes, including PS content, wt% solids, and air bubble contact angle. In contrast, Flavobacterium attachment was primarily associated with membrane thickness and charge (i.e., uranyl cation binding or degree of sulfonation). Membrane flux was inversely correlated with surface hydrophobicity and PS content, but (in contrast to cell attachment) positively correlated with most pore geometry parameters including the mean aspect ratio, suggesting that pore geometry can be optimized to minimize cell attachment and maximize water transport. Other variables influencing water flux included the NMP–PA solvent concentration and membrane roughness. The results should facilitate the design of novel microporous PS membranes having reduced biofouling potentials and greater water fluxes.  相似文献   

2.
This study investigates the performance of ultrafiltration (UF) by membranes coated with titanium dioxide (TiO2) photocatalyst under ultraviolet (UV) illumination in removing natural organic matter (NOM) and possibly in reducing membrane fouling. Experiments were carried out using heat-resistant ceramic disc UF membranes and humic acids as model substances representing naturally occurring organic matter. Membrane sizes of 1, 15, and 50 kDa were used to examine the effects of coating under ultraviolet irradiation. A commercial humic solution was subjected to UF fractionation (batch process); gel filtration chromatography was applied to study the effects of molecular weight distribution of NOM on UF membrane fouling. When compared to naked membranes, UV254 (ultraviolet light of lambda=254 nm) illumination of TiO2-coated membranes exhibits more flux decline with similar effluent quality. Although the UF membrane is able to remove a significant amount of humic materials, the incorporated photocatalysis results in poor performance in terms of permeate flux. The TiO2-coated membrane under UV254 irradiation alters the molecular weight (MW) distribution of humic materials, reducing them to <1 kDa, which is smaller than the smallest (1-kDa) membrane in this study. Thus, TiO2-coated membranes under UV254 irradiation do not perform any better in removing natural organic matter and reducing membrane fouling.  相似文献   

3.
A method based on a simple linear regression fitting was proposed and used to determine the type, the chronological sequence, and the relative importance of individual fouling mechanisms in experiments on the dead-end filtration of colloidal suspensions with membranes ranging from loose ultrafiltration (UF) to nanofiltration (NF) to non-porous reverse osmosis (RO). For all membranes, flux decline was consistent with one or more pore blocking mechanisms during the earlier stages and with the cake filtration mechanism during the later stages of filtration. For ultrafiltration membranes, pore blocking was identified as the largest contributor to the observed flux decline. The chronological sequence of blocking mechanisms was interpreted to depend on the size distribution and surface density of membrane pores. For salt-rejecting membranes, the flux decline during the earlier stages of filtration was attributed to either intermediate blocking of relatively more permeable areas of the membrane skin, or to the cake filtration in its early transient stages, or a combination of these two mechanisms. The findings emphasize the practical importance of the clear identification of, and differentiation between mechanisms of pore blocking and cake formation as determining the potential for the irreversible fouling of membranes and the efficiency of membrane cleaning.  相似文献   

4.
The formation of self-forming dynamic membrane on a porous ceramic support was studied. Pineapple juice of 12° Brix concentration was used in the experiments which were carried out at 25°C by circulating the pineapple juice at the applied pressure of 100, 200, and 300 kPa and at cross-flow velocities of 1.30–2.95 m s−1 through the ceramic membrane module for 1 h. The experimental data of flux and rejections showed that the dynamic membrane was well-formed after 30 min of circulation under the applied pressure of 300 kPa and at a cross-flow velocity of 2.0 m s−1 in which the steady values of flux and rejections of macromolecules and sugars obtained from the filtration mode were 6.0×10−3 m3/m2 h, 84–87% and 6%, respectively. The corresponding values for ultrafiltration by alumina membrane of MW cut-off 50,000, using equivalent conditions, were 15.8×10−3 m3/m2 h, 91% and 10.5%. Ultrafiltration was found to be more promising. The stability of the self-forming dynamic membrane was acceptable when subjected to change of filtration conditions. The permeation flux increased with cross-flow velocity and decreased when the applied pressure was reduced. The resistances for filtration by dynamic membrane and by ultrafiltration were calculated. For a porous support of large pore sizes, an in-pore blockage of solutes which were smaller than the membrane pores reduced the pore volume and induced fouling. Internal fouling resistance (Rf) was, therefore significant and responsible for the values of flux and rejection and was approximately 70% of total resistance. While in ultrafiltration, in which membrane with a smaller pore diameter was used, Rf was only 20% but Rp, the polarized layer resistance, was as high as 60% of total resistance.  相似文献   

5.
Mass transfer during crossflow ultrafiltration is mathematically expressed using the two-dimensional convective–diffusion equation. Numerical simulations showed that mass transfer in crossflow filtration quickly reaches a steady-state for constant boundary conditions. Hence, the unsteady nature of the permeate flux decline must be caused by changes in the hydraulic boundary condition at the membrane surface due to cake formation during filtration. A step-wise pseudo steady-state model was developed to predict the flux decline due to concentration polarization during crossflow ultrafiltration. An iterative algorithm was employed to predict the amount of flux decline for each finite time interval until the true steady-state permeate flux is established. For model verification, crossflow filtration of monodisperse polystyrene latex suspensions ranging from 0.064 to 2.16 μm in diameter was studied under constant transmembrane pressure mode. Besides the crossflow filtration tests, dead-end filtration tests were also carried out to independently determine a model parameter, the specific cake resistance. Another model parameter, the effective diffusion coefficient, is defined as the sum of molecular and shear-induced hydrodynamic diffusion coefficients. The step-wise pseudo steady-state model predictions are in good agreement with experimental results of flux decline during crossflow ultrafiltration of colloidal suspensions. Experimental variations in particle size, feed concentration, and crossflow velocity were also effectively modeled.  相似文献   

6.
Reverse osmosis (RO) is being increasingly used in treatment of domestic wastewater secondary effluent for potable and non-potable reuse. Among other solutes, dissolved biopolymers, i.e., proteins and polysaccharides, can lead to severe fouling of RO membranes. In this study, the roles of RO membrane surface properties in membrane fouling by two model biopolymers, bovine serum albumin (BSA) and sodium alginate, were investigated. Three commercial RO membranes with different surface properties were tested in a laboratory-scale cross-flow RO system. Membrane surface properties considered include surface roughness, zeta potential, and hydrophobicity. Experimental results revealed that membrane surface roughness had the greatest effect on fouling by the biopolymers tested. Accordingly, modified membranes with smoother surfaces showed significantly lower fouling rates. When Ca2+ was present, alginate fouled RO membranes much faster than BSA. Considerable synergistic effect was observed when both BSA and alginate were present. The larger foulant particle sizes measured in the co-existence of BSA and alginate indicate formation of BSA-alginate aggregates, which resulted in greater fouling rates. Faster initial flux decline was observed at higher initial permeate flux even when the flux was measured against accumulative permeate volume, indicating a negative impact of higher operating pressure.  相似文献   

7.
Composite polymer membranes with chemically different surfaces are prepared by the photochemical modification of Millipore microfiltration poly(vinylidene fluoride) and polysulfone membranes using 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-hydroxyethyl methacrylate, and 2-(dimethylamino)ethyl methacrylate quaternized with methyl chloride. It is shown that, during the filtration of an E. coli suspension, the membrane flux substantially decreases with time owing to the fouling of the membrane surface by bacterial cells. The membranes with the hydrophilic surface are less susceptible to fouling than hydrophobic membranes, while the ability to recover the performance upon washing is higher for the membranes with a chemically neutral surface than for charged membranes. It is shown that the susceptibility of membranes to microbiological fouling reduces with a decrease in the roughness of the membrane surface. It is established that the membranes modified with the quaternized 2-(dimethylamino)ethyl methacrylate possess antibacterial properties. These membranes proved to be the most efficient in the filtration of natural surface water in a noncontinuous regime, a result that is explained by the ability of membranes to prevent the formation of a fouling biofilm on their surfaces.  相似文献   

8.
Crystalline bacterial cell surface layers (S-layers) were used for the preparation of the active filtration layer of ultrafiltration membranes (S-layer ultrafiltration membranes; SUMs). Since the S-layer is uniform in its pore size and morphology and its functional groups are aligned in well-defined positions, the SUMs provide ideal model systems for studying protein adsorption and membrane fouling. Due to the presence of surface-located carboxyl groups the standard SUMs have the net negative charge but exhibit basically a hydrophobic character. In order to change the net charge, the charge density and the accessibility of charged groups of the SUMs as well as their hydrophobicity, free carboxyl groups of the S-layer protein were modified with selected low molecular weight nucleophiles under conditions of preserving the crystalline lattice structure. SUMs with 1.6 to 7 charged or functional groups exposed per nm2 of the membrane area were used for adsorption experiments. After solutions of differently sized and charged test proteins were filtered, the relative flux losses of distilled particle free water were measured. The results showed that the adsorption capacity of the SUMs increased with the extent of their hydrophobicity. Test proteins showed their own specific adsorption characteristics, which clearly demonstrated the difficulties in determining parameters controlling the membrane fouling. Independent of the net charge of the test proteins and that of the SUMs, the flux loss of SUMs increased with the increased charge density and an improved accessibility of the charged groups on the S-layer surface. No essential differences in the adsorption characteristics were observed between the zwitterionic SUMs of slightly surplus of free carboxyl groups and the standard SUMs of net negative charge.  相似文献   

9.
Oily wastewaters are produced in large amounts in many fields of food, mechanical, and other types of industry. In order to protect the environment, wastewaters must not be discharged directly into sewers. First, they must be cleaned at least down to 50 mg L−1 of oil content (according to Hungarian standard). In previous research, the authors found that oil-in-water emulsions can be separated with filtration using ceramic ultrafiltration tubular membranes. The relatively high price of ceramic membranes can be compensated by the fact that this separation process can be significantly intensified by static mixers inside the tubular membranes. New generations of ceramic membranes are the ceramic capillary membranes. These two different types of membranes and their effects on permeate flux, oil retention and specific energy consumption were compared in this work. The results, obtained with a stable oil-in-water emulsion as feed, showed that the use of novel ceramic capillary membranes at optimal operating cross-flow rate and transmembrane pressure is reasonable. The results have also shown the advantage of static mixing in the lumen side of the membrane tube providing a wider range of satisfactory separation level and increased permeate flux.  相似文献   

10.
Biofilms are complex microbial communities with important biological functions including enhanced resistance against external factors like antimicrobial agents. The formation of a biofilm is known to be strongly dependent on substrate properties including hydrophobicity/hydrophilicity, structure, and roughness. The adsorption of (macro)molecules on the substrate, also known as conditioning film, changes the physicochemical properties of the surface and affects the bacterial adhesion. In this study, we investigate the physicochemical changes caused by Periwinkle wilt (PW) culture medium conditioning film formation on different surfaces (glass and silicon) and their effect on X. fastidiosa biofilm formation. Contact angle measurements have shown that the film formation decreases the surface hydrophilicity degree of both glass and silicon after few hours. Atomic force microscopy (AFM) images show the glass surface roughness is drastically reduced with conditioning film formation. First-layer X. fastidiosa biofilm on glass was observed in the AFM liquid cell after a period of time similar to that determined for the hydrophilicity changes. In addition, attenuation total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy supports the AFM observation, since the PW absorption spectra increases with time showing a stronger contribution from the phosphate groups. Although hydrophobic and rough surfaces are commonly considered to increase bacteria cell attachment, our results suggest that these properties are not as important as the surface functional groups resulting from PW conditioning film formation for X. fastidiosa adhesion and biofilm development.  相似文献   

11.
The effects of nonionic surfactants having different hydrophilicity and membranes having different hydrophobicity and molecular weight cut-off on the performance of micellar-enhanced ultrafiltration (MEUF) process were examined. A homologous series of polyethyleneglycol (PEG) alkylether having different numbers of methylene groups and ethylene oxide groups was used for nonionic surfactants. Polysulfone membranes and cellulose acetate membranes having different molecular cut-off were used for hydrophobic membranes and hydrophilic membranes, respectively. The concentration of surfactant added to pure water was fixed at the value of 100 times of critical micelle concentration (CMC). The flux through polysulfone membranes decreased remarkably due to adsorption mainly caused by hydrophobic interactions between surfactant and membrane material. The decline of solution flux for cellulose acetate membranes was not as serious as that for polysulfone membranes because of hydrophilic properties of cellulose acetate membranes. The surfactant rejections for the cellulose acetate membranes increased with decreasing membrane pore size and with increasing the hydrophobicity of surfactant. On the other hand the surfactant rejections for polysulfone membranes showed totally different rejection trends with those for cellulose acetate membranes. The surfactant rejections for the polysulfone membranes depend on the strength of hydrophobic interactions between surfactant and membrane material and molecular weight of surfactants.  相似文献   

12.
Five different chemically modified versions of polysulfone were prepared via two different homogeneous chemical reaction pathways. They, together with the base polymer, were cast as membranes by a phase-inversion process. The surface energies of these membranes, as measured by contact angles, were used to characterize the different membranes. Streaming-potential measurements were obtained to probe the surface charge of the membranes. The surface roughness of each membrane was also determined by atomic-force microscopy. Each membrane was then exposed to deionized water, 0.08 g/l bovine serum albumin solution and deionized water using a standard filtration procedure to simulate protein fouling and cleaning potential.Both the chemistry and the size of the grafted molecules were correlated with respect to volumetric flux during ultrafiltration of protein solutions. Surface roughness seemed to be important for filtering pure water. Hysteresis between advancing and receding contact angles increased with hydrophilicity of the membrane surfaces. One possible explanation could be that surface reorientation was more likely with hydrophilic than with hydrophobic membranes. The membrane modified by direct sulfonation had the lowest surface energy and the shortest grafted chain length and exhibited the highest volumetric flux with BSA solution. It was also the easiest to clean and exhibited the highest initial flux recovery by stirring (91%) and backflush (99%) methods with deionized water. In most cases, backflushing rather than stirring was more effective in recovering the water flux.  相似文献   

13.
Biofilm fouling is one of the major obstacles hindering the use of membranes in water processing systems. There are a series of events that take place during biofilm formation, one of the most interesting and important issues of biofouling is the initial attachment of microorganisms to the surface. Therefore, effects that surface properties have on biofilm fouling are important to attachment and were examined. Hydrophobicity, surface charge and roughness were measured for several polymeric surfaces of interest in water processing membrane systems. These surfaces were then subjected to conditioning layer formation and biofilm fouling, both of which were quantified. The results show that biofilm initiation by a strain of Pseudomonas aeruginosa increases as the surface becomes more rough and more hydrophobic, while fouling is minimal when surface charge is minimized and increases with increasing charge, whether positive or negative.  相似文献   

14.
Rapid backpulsing to reduce membrane fouling during crossflow microfiltration and ultrafiltration is studied by solving the convection-diffusion equation for concentration polarization and depolarization during cyclic operation with transmembrane pressure reversal. For a fixed duration of reverse filtration, there is a critical duration of forward filtration which must not be exceeded if the formation of a cake or gel layer on the membrane surface is to be avoided. The theory also predicts an optimum duration of forward filtration which maximizes the net flux, since backpulsing at too high of frequency does not allow for adequate permeate collection during forward filtration relative to that lost during reverse filtration, whereas backpulsing at too low of frequency results in significant flux decline due to cake or gel buildup during each period of forward filtration. In general, short backpulse durations, low feed concentrations, high shear rates, and high forward transmembrane pressures give the highest net fluxes, whereas the magnitude of the reverse transmembrane pressure has a relatively small effect.Rapid backpulsing experiments with yeast suspended in deionized water performed with a flat-sheet crossflow microfiltration module and cellulose acetate membranes with 0.07 μm average pore diameter. The optimum forward filtration times were found to be 1.5, 3, and 5 s, respectively, for backpulse durations of 0.1, 0.2, and 0.3 s. Both theory and experiment gave net fluxes with backpulsing of about 85% of the clean membrane flux (0.022 cm/s = 790 l/m2 h), whereas the long-term flux in the absence of backpulsing is an order-of-magnitude lower (0.0026 cm/s = 94 l/m2 h).  相似文献   

15.
Relation between membrane characteristics and performance in nanofiltration   总被引:2,自引:0,他引:2  
The performance of commercial membranes during nanofiltration of aqueous solutions containing dissolved uncharged or charged organic components, was studied on the basis of membrane characteristics by means of multiple linear regression.

The membrane characteristics studied were surface hydrophobicity, surface roughness, surface charge, molecular weight cut-off (MWCO), permeability and porosity of the top layer (expressed as the volume fraction of small and large pores, determined by Positron Annihilation Lifetime Spectroscopy). Filtration and adsorption experiments were performed in the presence of various components, which differ in molecular mass, hydrophobicity and (in the case of charged organic components) in charge.

It was concluded that in order to minimize fouling, the membrane should have a low volume fraction of small pores in the top layer. When the organic components are charged, a membrane with a large surface charge and a high hydrophilicity is also favourable. Not only the membrane, but also the feed characteristics have an influence on fouling: the best results during nanofiltration of dissolved uncharged or charged components were obtained with hydrophilic or negatively charged components, respectively. Dissolved organic components were the best retained by membranes with a low MWCO. In addition, uncharged organic components should be hydrophilic and small to obtain a high retention and minimal flux decline, while the interplay between membrane and component charge is crucial during filtration of dissolved charged organic components.  相似文献   


16.
We employ in situ deposited secondary membranes of yeast (SMYs) to optimize permeate flux during microfiltration and ultrafiltration of protein solutions. The deposited secondary membrane was periodically removed by backflushing, and a new cake layer was deposited at the start of the next cycle. The effects of backflushing time, backflushing strength, wall shear rate, and amount of secondary membrane deposited on the permeate flux were examined. Secondary membranes were found to increase the permeate fluxin microfiltration by severalfold. Protein transmission was also enhanced owing to the presence of the secondary membrane, and the amount of protein recovered was more than twice that obtained during filtration of protein-only solutions under othewise identical conditions. In ultrafiltration, the flux enhancement owing to the secondary membrane was only 50% or less. In addition, the flux for ultrafiltration was relatively insensitive to changes in the concentration of yeast used during deposition of SMY and to the backflushing strength used to periodically remove the secondary membrane.  相似文献   

17.
This work presents the fabrication of cellulose acetate (CA)–ceramic composite membranes using dip coating technique. Ceramic supports used in this work were prepared from kaolin with an average pore size of 560 nm and total porosity of 33%. The dip coating parameters studied experimentally were the concentration of CA solution (varying from 2 wt% to 8 wt%) in acetone and dipping time (varying from 30 s to 150 s). The fabricated composite membranes were characterized using scanning electron microscope, gas permeation, pure water flux and ultrafiltration (UF) experiments using bovine serum albumin (BSA). It was observed that the membrane prepared with 2 wt% and 4 wt% CA were suitable for microfiltration applications and those with 6 wt% and 8 wt% were for ultrafiltration applications. Theoretical investigation was conducted to know the macroporous and mesoporous structure of the prepared membranes using Knudsen and viscous permeability analysis of air. A resistance in series model was applied to identify different resistances responsible for the flux decline. Phenomenological models were proposed to illustrate the dependency of hydraulic resistance of membrane on the structural parameters such as average pore size, effective porosity as well as dip coating parameters like dipping time and concentration of CA. It was found that, the growth rate of CA film on the ceramic support followed exponential growth law with respect to dipping time. The total hydraulic resistance of the membrane was evaluated to be inversely proportional to the ratio of pore sizes of top layer and ceramic support. The resistance due to the CA film was found to be depended to the order of 1.73 with respect to concentration of CA. An increase in the concentration of CA was found to be more effective than dipping time to reduce the membrane pore size.  相似文献   

18.
Electrospun polyacrylonitrile (PAN) nanofibrous scaffold was used as a mid-layer support in a new kind of high flux thin film nanofibrous composite (TFNC) membranes for nanofiltration (NF) applications. The top barrier layer was produced by interfacial polymerization of polyamides containing different ratios of piperazine and bipiperidine. The filtration performance (i.e., permeate flux and rejection) of TFNC membranes based on electrospun PAN nanofibrous scaffold was compared with those of conventional thin film composite (TFC) membranes consisting of (1) a commercial PAN ultrafiltration (UF) support with the same barrier layer coating and (2) two kinds of commercial NF membranes (i.e., NF90 and NF270 from Dow Filmtec). The nanofiltration test was carried out by using a divalent salt solution (MgSO4, 2000 ppm) and a cross-flow filtration cell. The results indicated that TFNC membranes exhibited over 2.4 times more permeate flux than TFC membranes with the same chemical compositions, while maintaining the same rejection rate (ca. 98%). In addition, the permeate flux of hand-cast TFNC membranes was about 38% higher than commercial NF270 membrane with the similar rejection rate.  相似文献   

19.
High-flux ceramic membranes with a nanomesh of metal oxide nanofibers   总被引:2,自引:0,他引:2  
Traditional ceramic separation membranes, which are fabricated by applying colloidal suspensions of metal hydroxides to porous supports, tend to suffer from pinholes and cracks that seriously affect their quality. Other intrinsic problems for these membranes include dramatic losses of flux when the pore sizes are reduced to enhance selectivity and dead-end pores that make no contribution to filtration. In this work, we propose a new strategy for addressing these problems by constructing a hierarchically structured separation layer on a porous substrate using large titanate nanofibers and smaller boehmite nanofibers. The nanofibers are able to divide large voids into smaller ones without forming dead-end pores and with the minimum reduction of the total void volume. The separation layer of nanofibers has a porosity of over 70% of its volume, whereas the separation layer in conventional ceramic membranes has a porosity below 36% and inevitably includes dead-end pores that make no contribution to the flux. This radical change in membrane texture greatly enhances membrane performance. The resulting membranes were able to filter out 95.3% of 60-nm particles from a 0.01 wt % latex while maintaining a relatively high flux of between 800 and 1000 L/m2.h, under a low driving pressure (20 kPa). Such flow rates are orders of magnitude greater than those of conventional membranes with equal selectivity. Moreover, the flux was stable at approximately 800 L/m2.h with a selectivity of more than 95%, even after six repeated runs of filtration and calcination. Use of different supports, either porous glass or porous alumina, had no substantial effect on the performance of the membranes; thus, it is possible to construct the membranes from a variety of supports without compromising functionality. The Darcy equation satisfactorily describes the correlation between the filtration flux and the structural parameters of the new membranes. The assembly of nanofiber meshes to combine high flux with excellent selectivity is an exciting new direction in membrane fabrication.  相似文献   

20.
Micellar-enhanced ultrafiltration (MEUF) of phenol and a cationic surfactant, cetylpyridinium chloride (CPC), is studied using two polysulfone membranes of 5- and 50-kDa molecular weight cutoff (MWCO) and two ceramic membranes of 15- and 50-kDa MWCO. Filtrations are run under laminar cross-flow and steady-state conditions. The effect of operation variables (pressure and retentate flux) and membrane properties (nature and MWCO) on permeate flux, surfactant, and phenol rejections is analyzed. The permeate flux depends, among other variables, on the fouling favored by membrane-micelle interactions, which are strongest in the 50-kDa MWCO ceramic membrane. On the other hand, surfactant rejection is mainly determined by the pore size and influenced by the pressure for both 50-kDa MWCO membranes. An equilibrium distribution constant, K(s), of phenol between surfactant micelles and water is calculated. Its value is not significantly affected by operation conditions and membrane type. K(s) is also approximately 20% lower than the value determined in a previous work with batch dead-end ultrafiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号