首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
乔从德 《高分子科学》2013,31(9):1321-1328
The melting and crystallization behaviors of poly(ε-caprolactone) (PCL) ultra-thin films with thickness from 15 nm to 8 nm were studied by AFM technique equipped with a hot-stage in real-time. It was found that melting can erase the spherulitic structure for polymer film with high thickness. However, annealing above the melting point can not completely erase the tree-like structure for the thinner polymer film. Generally, the structure formation of thin polymer films of PCL is controlled not only by melting and crystallization but also by dewetting during thermal annealing procedures, and dewetting predominates in the structure formation of ultra-thin films. However, the presence of tree-like morphology at 75 °C may be due to the strong interaction between PCL and mica surface, which may stick the PCL chains onto the mica surface during thermal annealing process. Moreover, the growth of the dendrites was investigated and it was found that crystallization is followed from a dewetted sample, and the branches did not grow with the stems. The crystallization of polymer in the ultra-thin films is a diffusion-controlled process. Both melting and crystallization behaviors of PCL in thin films are influenced by film thickness.  相似文献   

2.
The crystalline behavior of urethane substitute polydiacetylene was studied by using pohrized light and electron microscopy. The lamellar morphological structure was observed in the crystallized films. The thickness of lamellae is about 300A, being independent of the crystalline temperature. But the size and density of lamellae were dependent on the crystallization temperature. If the molten film was sheared during the crystallzation process the oriented lamellae grew with their long axes perpendicular to the direction of shear and the chain direction was normal to the lamellar surface.  相似文献   

3.
The composite films, XW11O39^n-/SiO2,(X refers to Si,Ge or P,respectively) were prepared by tetraethoxysilane (TEOS) hydrolysis sol-gel method via spin-coating technique. Formation of the composite films is due to strong chemical reaction of organic silanol group with the surface oxygen atoms of XW11O39^n-, resulted in the saturation of the surface of the lacunary polyoxometalates (POMs). Therefore,the coordination structural model of the films was proposed. As for the films, retention of the primary Keggin structure was confirmed by UV-vis, FT-IR spectra and MAS NMR. The surface morphology of the films was characterized by SEM, indicating that the film surface is relatively uniform, and the layer thickness is in the range of 250-350nm. Aqueous formic acid (FA) (0-20mmol/L) was degraded into CO2 and H2O by irradiating the films in the near-UV area. The results show that all the films have photocatalytic activities and the degradation reaction follows Langmuir-Hinshelwood first order kinetics.  相似文献   

4.
王学川  晏超 《高分子科学》2014,32(4):488-496
The effects of crystallization temperature and blend ratio on the polymorphic crystal structures of poly(butylene adipate)(PBA) in poly(butylene succinate)(PBS)/poly(butylene adipate)(PBS/PBA) blends were studied by means of differential scanning calorimetry(DSC), wide-angle X-ray diffraction(XRD) and atomic force microscopy(AFM). It was revealed that the polymorphism of PBA can be regulated by the blend ratio even in a non-isothermal crystallization process. The results demonstrate that high temperature favors flat-on α crystals, while low temperature contributes to edge-on β crystals. It was also found that the effect of blend ratio on the crystallization mechanism of PBA is well coincident with that of the crystallization temperature. The increment of PBS content in the PBS/PBA blend gives rise to more β-form crystals of PBA. For those PBS/PBA blends with low PBA content, the interlamellar phase segregation of PBA makes its molecular chains so difficult to diffuse from one isolated microdomain to another that high crystallization temperature and sufficiently long crystallization time will be required if the PBA α-type crystals are targeted.  相似文献   

5.
A sample containing different regions with poly(ε-caprolactone)(PCL), oriented polyethylene (PE), and oriented isotactic polypropylene (iPP) films in contact with glass slide has been prepared to be observed in the same view field in an optical microscope and the crystallization of PCL in different regions during cooling from 80 °C down to room temperature at a rate of 1 °C·min^-1 was studied. The results showed that the crystallization of PCL started first at the PE surface and then at the iPP surface, while its bulk crystallization occured much later. This indicates that though both PE and iPP are active in nucleating PCL, the nucleation ability of PE is stronger than that of iPP. This was due to a better lattice matching between PCL and PE than that between PCL and iPP. Moreover, since lattice matching existed between every (hk0) lattice planes of both PCL and PE but only between the (100)PCL and (010)iPP lattice planes, the uniaxial orientation feature of the used PE and iPP films resulted in the existence of much more active nucleation sites of PCL on PE than on iPP. This led to the fact that the nucleation density of PCL at PE surface was so high that the crystallization of PCL at PE surface took place in a way like the film developing process with PCL microcrystallites happened everywhere with crystallization proceeding simultaneously. On the other hand, even though iPP also enhanced the nucleation density of PCL evidently, the crystallization of PCL at iPP surface included still a nucleation and crystal growth processes similar to that of its bulk crystallization.  相似文献   

6.
闫寿科 《高分子科学》2016,34(4):513-522
Oriented thin films of P3HT were obtained by a friction-transfer technique. The morphology and structure of the film were studied by means of optical microscopy, atomic force microscopy and transmission electron microscopy. Optical microscopy observation indicates that large size well-ordered P3HT thin films can be produced by a friction-transfer technique. Highly ordered lamellae were observed in P3HT friction-transferred films by electron microscopy. Electron diffraction results confirm the existence of high orientation with the a- and c-axes of P3HT crystals aligned in the film plane while the c-axis parallel to the friction-transfer direction. The atomic force microscopy observation of the as-prepared P3HT thin film shows, however, a featureless top surface morphology, indicating the structure inhomogeneity of the obtained film. To get highly oriented P3HT thin films with homogenous structure, high temperature annealing, solvent vapor annealing and self-seeding recrystallization of the friction-transferred film were performed. It is confirmed that solvent vapor annealing and self-seeding recrystallization methods are efficient in improving the surface morphology and structure of the frictiontransferred P3HT thin film. Highly oriented P3HT films with unique structure can be obtained through friction-transfer with subsequent solvent vapor annealing and self-seeding recrystallization.  相似文献   

7.
The influence of cyanuric acid(CA) as an efficient nucleating agent on the crystallization behavior and morphology of biodegradable poly(ε-caprolactone)(PCL) was extensively studied in this work with several techniques for the first time. The nonisothermal melt crystallization behavior and overall isothermal melt crystallization rate of PCL were significantly enhanced by only a small amount of CA. The addition of CA apparently improved the nonisothermal melt crystallization peak temperature, overall isothermal melt crystallization rate, and nucleation density of PCL spherulites, but did not modify the crystallization mechanism and crystal structure of PCL, indicating that CA was an efficient nucleating agent for the crystallization of PCL. The possible nucleation mechanism of CA on the crystallization of PCL was also discussed on the basis of their crystal structures.  相似文献   

8.
The surface chemical structure development in solution-cast styrene(S)/butadiene(B) block copolymer films as a function of solvent evaporation time was investigated using sum frequency generation vibrational spectroscopy(SFG).The surface structure formation of the styrene(S)/butadien(B) block copolymer(30 wt% PS) films during the solution-to-film process was found to be controlled mainly by dynamic factors,such as the mobility of the PB block in solution.For SB diblock copolymers,a pure PB surface layer was formed only when the film was cast by dilute toluene solution.With increasing concentration of casting solution,PB and PS components were found to coexist on the film surface,and the morphology of the PB component on the film surface changed from cylindrical rods to spheres.For SBS triblock copolymers,a small amount of PS component existed on the surface even if the film was cast by 1.0 wt% toluene solution.In addition,PS components at the outermost layer of the film increased and the length of PB cylindrical rods on the surface decreased with increasing concentration of casting solution.  相似文献   

9.
The reflection-absorption infrared (RAIR) was employed to study the crystallization kinetic of poly (ethylene terephthalate) (PET) ultrathin films. During isothermal crystallization the thinner PET film shows a slower kinetic compared with the thicker film. Moreover, the final crystallinity of films with various thickness was found decrease with thickness. The result of fitting our data to Avrami equation showed that the Avrami exponents decrease with film thickness.  相似文献   

10.
A preliminary study of using maleic anhydride copolymer for protein binding has been carried out.The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups.The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements.The protein content was determined by Bradford assay.To obtain optimum conditions,immersion time for protein binding was examined.Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage.The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87μg/cm~2,although the film had low anhydride content(3%) on the surface.  相似文献   

11.
Surface properties and enzymatic degradation of poly(l-lactide) (PLLA) end-capped with hydrophobic dodecyl and dodecanoyl groups were investigated by means of advancing contact angle (θa) measurement, quartz crystal microbalance (QCM) and atomic force microscopy (AFM). The θa values of end-capped PLLA films were larger than those of non-end-capped PLLA films, suggesting that the hydrophobic dodecyl and dodecanoyl groups were segregated on the film surface. The weight changes of end-capped PLLA thin films during enzymatic degradation in the presence of proteinase K were monitored by using a QCM technique. The relatively fast weight loss of PLLA film occurred during first few hours of degradation, followed by a decrease in the erosion rate. The erosion rate of PLLA films at the initial stage of degradation was dependent on the chain-end structure of PLLA molecules, and the value decreased with an increase in the amount of hydrophobic functional groups. The surface morphologies of PLLA thin films before and after degradation were characterized by AFM. After the enzymatic degradation, the surface of non-end-capped PLLA films was blemished homogeneously. In contrast, the end-capped PLLA thin films were degraded heterogeneously by the enzyme, and many hollows were formed on the film surface. From these results, it has been concluded that the introduction of hydrophobic functional groups at the chain-ends of PLLA molecules depressed the erosion rate at the initial stage of enzymatic degradation.  相似文献   

12.
The introduction of aromatic butylene terephthalate (BT) units into the backbone chains of aliphatic poly(butylene adipate) (PBA) not only changes the mechanical performance of the resultant P(BA-co-BT) copolymers but also affects their biodegradability. Because of the polymorphism of PBA homopolymer, the copolymerized BT units may also influence the polymorphic crystal structure as well as the biodegradation behavior. In this work, three P(BA-co-BT) copolymers with BT contents as 10, 20, and 25 mol% were chosen to study their polymorphic crystal structure, thermal properties and enzymatic degradation by means of wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and gravimetric methods. The results reveal that the P(BA-co-BT) copolymers with BT contents below 25 mol% can form polymorphic crystal structures after melt-crystallization at different temperatures. However, the recrystallization and transformation of polymorphic crystals are strongly affected by the rigid BT units. The enzymatic degradation rates of P(BA-co-BT) copolymers decrease with increasing the BT contents. The influences of the BT units on the polymorphism and enzymatic degradation are discussed in terms of the motion of PBA chains that copolymerized with BT units. It has been concluded from the examination of solid-state microstructure that the influence of the aromatic BT units on the motion of biodegradable PBA chains heavily influences the biodegradability.  相似文献   

13.
Surface confined recrystallization of highly-oriented polyethylene (PE) thin films realized by carbon-coating was utilized to control the morphological structure of ultrathin PE films. Selective carbon-coating with the help of a mask and subsequent recrystallization of the pre-oriented PE thin film lead to a partially structural control of the PE thin film in the coated domains. A fully structural control of the PE film is then fulfilled through a combination of surface confinement and heteroepitaxy of PE on the oriented poly(tetrafluroethylene) (PTFE) thin film. The thus obtained structure can serve as a template to induce pattern structures of a variety of other polymers through epitaxial growth. The poly(ε-caprolactone) (PCL) and poly(butylenes adipate) (PBA) micropattern thin films are shown in this paper as examples. These thin films exhibit different birefringence in different regions depending on the molecular orientation and may find potential applications in the fields of polarization-dependent display or storage.  相似文献   

14.
The effects of nucleating agent multimethyl-benzilidene sorbitol (TM6) on crystallization and morphology of poly(butylene adipate) (PBA) with polymorphic crystal structures were studied by means of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and polarized optical micrographs (POM). In addition to the heterogeneous nucleation, TM6 changes the formation conditions of PBA polymorphic crystals. The addition of TM6 is favorable for the formation of PBA α-form crystals, resulting in the morphological changes from spherulites to interpenetrated fibrils. The influences of TM6 on enzymatic degradation of PBA were studied in terms of the morphological change and weight loss. The results indicate that the α-form crystals induced by TM6 show much slower degradation rate. This work provides an efficient method to control the polymorphic crystal structure and further to regulate the biodegradation rate of polymer materials through modulating the homogeneous and heterogeneous nucleation modes by adding nucleating agents.  相似文献   

15.
热处理对聚己二酸丁二醋多晶结构和降解行为的影响   总被引:1,自引:0,他引:1  
通过熔融结晶并结合退火处理方法得到多晶结构的聚己二酸丁二酯(PBA)及具有不同热历史的热力学稳定的a晶型,采用广角X射线衍射仪(WAXD)、原子力显微镜(AFM)和差示扫描量热仪(DSC)研究了PBA的多晶结构、晶体尺寸和结晶形貌,跟踪了退火处理PBA的生物降解行为.结果表明,分子链在相同晶格排列中围绕c轴空间取向的不...  相似文献   

16.
Biodegradable block copolymer of poly(l-lactide-b-?-caprolactone) (P(LA-b-CL)) was dissolved in various solvents with different solubility as well as volatility, and spin-cast on a highly oriented pyrolytic graphite (HOPG) to prepare thin films. The surface morphologies were observed by using atomic force microscopy (AFM) in a dynamic force (tapping) mode. Particle like morphology was found in the thin films prepared form the dichloromethane and acetone. Higher volatility of dichloromethane and acetone resulted in the reflection of the particle like objects in the solution to HOPG substrate. In contrast, the P(LA-b-CL)s in toluene and 1,4-dioxane exhibited different morphologies compared to those in dichloromethane and acetone. Lower volatility of toluene and 1,4-dioxane assisted the epitaxial crystallization of PCL component along the HOPG lattice, that was revealed by enzymatic degradation of PLLA component by proteinase K. Thus, adjusting the solubility and solvent volatility for the film formation provided morphological divergence of the P(LA-b-CL) block copolymer, and this technique would be applicable for the surface patterning of biodegradable polymers.  相似文献   

17.
Thin films of SrFe12O19 (SrM) were prepared from a solution of iron and strontium alkoxides through the chemical solution deposition method on both amorphous (glassy SiO2), and single crystal substrates (Si(100), Si(111), Ag(111), Al2O3(001), MgO(111), MgAl2O4(111), SrTiO3(111)) substrates. The process of crystallization was investigated by means of powder diffraction, atomic force microscopy and scanning electron microscopy. Magnetization measurements, ferromagnetic and nuclear magnetic resonance were used for evaluation of anisotropy in the films. Whilst amorphous substrates enabled growth of randomly oriented SrM phase, use of single crystal substrates resulted in samples with different degree of oriented growth. The most pronounced oriented growth was observed on SrTiO3(111). A detailed inspection revealed that growth of SrM phase starts through the breakup of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. A continuous film with epitaxial relations to the substrate was produced by repeating recoating and annealing.  相似文献   

18.
 The characteristics of the interface microstructures between a CVD diamond film and the silicon substrate have been studied by transmission electron microscopy and electron energy loss spectroscopy. The investigations are performed on plan-view TEM specimens which were intentionally thinned only from the film surface side allowing the overall microstructural features of the interface to be studied. A prominent interfacial layer with amorphous-like features has been directly observed for CVD diamond films that shows a highly twinned defective diamond surface morphology. Similar interfacial layers have also been observed on films with a <100> growth texture but having the {100} crystal faces randomly oriented on the silicon substrate. These interfacial layers have been unambiguously identified as diamond phase carbon by both electron diffraction and electron energy loss spectroscopy. For the CVD diamond films that exhibit heteroepitaxial growth features, with the {100} crystal faces aligned crystallographically on the silicon substrate, such an interfacial layer was not observed. This is consistent with the expectation that the epitaxial growth of CVD diamond films requires diamond crystals to directly nucleate and grow on the substrate surface or on an epitaxial interface layer that has a small lattice misfit to both the substrate and the thin film material.  相似文献   

19.
Highly oriented films were prepared simply by annealing a lamella-forming block copolymer, poly(ethylene oxide-b-styrene) (PEO-b-PS), with high molar mass under a pressure of 0.2 MPa. The oriented structures were characterized by small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). The SAXS measurements showed that the lamellar layers of the block copolymer are highly oriented parallel in the film plane. The WAXD images showed that the c-axis of PEO crystals was oriented normal to the film plane. The Hermans-Stein orientation functions for the lamellar layer and the crystal axis are 0.954 and −0.466, respectively, and are close to the values of perfect orientation. It was considered that the highly oriented structure was formed by the combined effects of shear flow and self-organization of the block copolymer during annealing under stress. The high degree of orientation both for the lamellar layer and crystal planes also suggested that the crystallization in the confined domains results in a high degree of orientation of PEO crystals with respect to the lamellar interface of the block copolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号