首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrolyzed Ru(η 6 -C6H5(CH2)2OH)Cl2(DAPTA) (DAPTA = 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) binding to guanine(G), adenine (A), cytosine(C), cysteine (Cys), and histidine (His) residues were explored using the B3LYP hybrid functional and IEF-PCM solvation models. The computed activation barriers for the reactions of diaqua complex were lower than those of chloroaqua complex except for binding to cytosine. For the chloroaqua complex, the activation free energy was lowest when binding to cytosine (10.5 kcal/mol). Whereas, the substitution reaction of diaqua complex binding to cysteine showed the lowest activation free energy with 10.1 kcal/mol, closely followed by histidine (15.8 kcal/mol), adenine (20.1 kcal/mol), cytosine (20.7 kcal/mol), and guanine (24.4 kcal/mol) by turns. It could be deduced that the completely hydrolyzed Ru(η 6 -C6H5(CH2)2OH)Cl2(DAPTA) compounds might preferentially bind to amino acids residues in vivo. In addition, to simulate the protein and DNA environment in vivo, a detailed investigation of the activation free energies for the substitution reactions in dependence of the dielectric constant ε (4, 24, and 78.39) was systematically performed as well. The calculated results demonstrated that the environmental effect had a little impact on these substitution reactions.  相似文献   

2.
Rotating-frame proton magnetic relaxation times have been measured on powder samples of adenine, guanine and cytosine at temperatures up to 570 K. Evidence for NH2group C2-axis reorientation has been obtained and the activation energies have been determined. Molecular orbital calculations confirm that the activation energy for NH2 reorientation is significantly lower for guanine than for adenine or cytosine.  相似文献   

3.
Casiopeínas® are Cu (II) mixed chelate complexes that have shown cytotoxic, genotoxic and antineoplastic activity. In order to understand the interaction of these complexes with biomolecules, we have studied in this work the interaction of Casiopeína III-ia [CAS 223930-33-4] with adenine, cytosine, thymine and guanine. X-ray diffraction analysis shown the molecular structure of an adduct {[Cu(dmbipy)(acac)(H2O)]NO3(adenine)2·2H2O} where dmbipy = 4,4′-dimethyl-2,2′-bipyridyne and acac = acetylacetonate, which is an example of intermolecular interaction between a ternary Cu (II) compound and adenine. Adduct is stabilized by hydrogen bonds, which include water molecules and adenines, and by π-π and C-H?π interactions between the ligands attached to the copper ion and the adenines. DFT calculations shown charge transfer between complex ligands and adenines being the former the acceptor and the latter the donor; these results reproduce very well the weak interactions found in the crystalline structure. DFT results shown the same behavior for thymine and guanine, meanwhile, cytosine has shown a direct coordination to metal center.  相似文献   

4.
A multicomponent method for scaffold-modification of nucleobases (adenine, guanine, and cytosine) was developed. This modification approach, as an alternative to usual synthetic routes involving protection-deprotection or SNAr of halo (or leaving group-equivalent)-purines, affords in one step therapeutically-relevant substituted aminoimidazole-[i]-condensed adenine, [b]-condensed guanine, [c]-condensed cytosine. These derived nucleobases possess enhanced lipophilicity and solubility and contain the functionalities useful for further chemical manipulations.  相似文献   

5.
Five new Ni(II) Schiff base complexes [NiLx(Solv)2] denoted by NiLx, x = 1–5, were synthesized and characterized. The Schiff base ligands were synthesized from the condensation of 5-bromo-2-hydroxy-3-nitrobenzaldehyde with different aliphatic and aromatic diamines. The X-ray crystal structure of NiL3 was determined. The ligands and complexes were tested as antibacterial agents against two gram(+) and two gram(?) human pathogenic bacteria. The complexes showed moderate antibacterial activity against both gram type bacteria. The new Ni(II) complexes showed enhanced antibacterial activity compared to the previously reported Cu(II) complexes of the same ligands.  相似文献   

6.
Mononuclear Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Mg(II), Sr(II), Ba(II), Ca(II), Pt(IV), Au(III), and Pd(II) complexes of the drug amlodipine besylate (HL) have been synthesized and characterized by elemental analysis, spectroscopic technique (IR, UV–Vis, solid reflectance, scanning electron microscopy, X-ray powder diffraction, and 1H-NMR) and magnetic measurements. The elemental analyses of the complexes are confirmed by the stoichiometry of the types [M(HL)(X)2(H2O)]·nH2O [M = Mn(II), Co(II), Zn(II), Ni(II), Mg(II), Sr(II), Ba(II), and Ca(II); X = Cl? or NO3 ?], [Cd(HL)(H2O)]Cl2, [Pd(HL)2]Cl2, [Pt(L)2]Cl2, and [Au(L)2]Cl, respectively. Infrared data revealed that the amlodipine besylate drug ligand chelated as monobasic tridentate through NH2, oxygen (ether), and OH of besylate groups in Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Mg(II), Sr(II), Ba(II), Ca(II), and Au(III) complexes, but in Pt(IV) and Pd(II) complexes, the amlodipine besylate coordinates via NH2 and OH (besylate) groups. An octahedral geometry is proposed for all complexes except for the Cd(II), Pt(IV), and Pd(II) complexes. The amlodipine besylate free ligand and the transition and non-transition complexes showed antibacterial activity towards some Gram-positive and Gram-negative bacteria and the fungi (Aspergillus flavus and Candida albicans).  相似文献   

7.
Monometallic trivalent complexes of iron were synthesized by reaction between N, O type donor ligands (L) or (L′) and metal salt in a 1:2 (metal:ligand) molar ratio. Structure and composition of metal complexes were evaluated by elemental analysis, conductance measurements, magnetic moment measurements, and various spectroscopic studies viz. FTIR, UV–visible, and ESI–MS. Analytical and molar conductance data are consistent with the formulation of complexes as [Fe(L)2X2]·X and [Fe(L′)2X2]·X (where; L = Hydrazine carboxylic acid ethyl ester, L′ = Hydrazine carboxylic acid tert-butyl ester and X = Cl?, Br? or NO3 ?) due to their 1:1 electrolytic nature. IR spectral data revealed bi-dentate coordination behavior of ligands. An octahedral geometry may be assigned for metal complexes on the basis of electronic absorption data and magnetic moment parameters. The compounds were evaluated for their biological activity by in vitro antimicrobial screening against bacteria Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella typhi and fungi Candida parapsilosis and Saccharomyces cerevisiae. The results indicate that metal complexes exhibit more activity than free ligands against studied microbes.  相似文献   

8.
Methyl-2-arylidene hydrazine-carbodithioate has not been of particular interest to researchers even though its metal complexes are extensively reported on due to their biological activity. This study examined the cytostatic and antiviral activity of twelve methyl-2-arylidene hydrazinecarbodithioates reported by many researchers as intermediates for the synthesis of thiosemicarbazides and the preparation of their metal complexes. Compounds IIc, IIi, and IIl with tridentate ligand features were found to have the lowest IC50 value (6.5 μM, ≈ 1 μM, and 0.8 μM, respectively) against HL60 human promyelocytic leukemia cells. They were also most inhibitory to human embryonic lung (HEL) fibroblast proliferation (5.3 μM, 17 μM, and 2.6 μM). Compound IIc and IIl show antiviral activity against wild-type herpes simplex virus (HSV), varicella zoster virus (VZV), and acyclovirresistant HSV; however, these activities were observed at concentrations at which the compounds also markedly inhibit HL60 and HEL cell proliferation.  相似文献   

9.
The mechanism of the decomposition of the entitled compounds and their complexes is studied. Adenine, its Schiff base of salicylaldehyde, and its azo resorcinol derivatives are ended with carbon. However, oxalonitrile compound is appeared as a final product for adenine acetylacetone and an intermediate for adenine. The thermodynamic parameters of the decomposition reaction were evaluated and discussed. The change of entropy values, ΔS #, showed that the transition states are more ordered than the reacting complexes. The thermal processes proceed in complicated mechanisms where the bond between the central metal ion and the ligands dissociates after losing small molecules such as H2O, NH3, or HCl. In most cases, the free radical species of the ligands are assigned to exist through decomposition mechanisms. The copper adenine and nickel salicylaldehyde complexes are ended with the metal as a final product. However, the cobalt adenine, its acetylacetone, its salicylaldehyde, cadmium and mercury guanine complexes are ended with metal oxides.  相似文献   

10.
A pair of isostructural azido- or thiocyanato-bridged centrosymmetric dinuclear copper(II) complexes, [Cu2L21,3-N3)2] (1) and [Cu2L21,3-NCS)2] (2), derived from the Schiff base ligand 4-nitro-2-[(2-diethylaminoethylimino)methyl]phenol (HL), have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Each Cu atom in the complexes is five-coordinate in a square pyramidal geometry by one O and two N atoms of one Schiff base ligand, and by two terminal donor atoms from two bridging azide or thiocyanate ligands. Both the azide and thiocyanate ligands adopt end-to-end bridging mode in the complexes. The distance between the two copper atoms is 5.205(2) Å for (1) and 5.515(2) Å for (2). The antimicrobial activity of the complexes has been tested.  相似文献   

11.
Reaction of Na2[PdCl4] with two equivalents of amino- or acetylamino-pyridines (LH) affords trans-[PdCl2-(LH)2] {LH = 2-amino-3-methylpyridine (2-ampyH), 3-aminopyridine (3-apyH), 2-acetylamino-3-methylpyridine (2-acmpyH), 3-acetylamino-pyridine (3-acpyH)}. An X-ray crystal structure of trans-[PdCl2(2-ampyH)2] shows that the 2-ampy-H ligands are coordinated in a monodentate fashion via the nitrogen atoms of the pyridine rings. Treatment of trans-[PdCl2(2-acmpyH)2] with NEt3 affords the cyclometalated complex, trans-[Pd(κ2-2-acmpy)2], the X-ray structure of which shows that the 2-acmpy ligand is coordinated to palladium in a bidentate fashion via the nitrogen atom of the pyridine ring and oxygen. Reaction of trans-[PdCl2(LH)2] with two equivalents of sodium saccharinate affords the bis(saccharinate) complexes, trans-[Pd(sac)2(LH)2], in which the saccharinate anions are coordinated via the amide nitrogen atom.  相似文献   

12.
Hydrates of 3-phenylpropenal thiosemicarbazone (HL·H2O) and semicarbazone (HL′·H2O) react in methanol with cobalt, nickel, copper, and zinc chlorides, nitrates, and acetates to form coordination compounds MX2·2HL·nSolv [M = Co, Ni, Cu, Zn; X = Cl, NO3; HL = C6H5CH=CH-CH=N-NHC(O)NH2; n = 0–3; Solv = H2O, CH3OH], CuX2·HL·nH2O [M = Ni, Cu; n = 0, 1], ML2·nH2O and ML′·nH2O [M = Co, Ni, Zn; HL′ = C6H5CH=CH-CH=N-NHC(O)NH2; n = 0–3]. In the presence of amines (A = C5H5N, 2-CH3C5H4N, 3-CH3C5H4N, and 4-CH3C5H4N) these reactions yield the complexes Cu(A)LCl·CH3OH and M(A)LX·nH2O [M = Cu, Ni; X = Cl, NO3; n = 0–2]. The copper complexes with the amine ligands are of polynuclear structure, and other complexes are monomeric. Carbazones (HL and HL′) are included in the complexes as bidentate N,S-and N,O-ligands. The thermolysis of the complexes involves the stages of removing solvent crystallization molecules (70–90°C), deaquation (150–170°C), and full thermal decomposition (500–580°C).  相似文献   

13.
The N,S bidentate proligand S-hexyl-β-N-(4-methoxybenzylidene)dithiocarbazate (HL), obtained by condensation of S-hexyldithiocarbazate with 4-methoxybenzaldehyde, has been used to synthesize six metal complexes, namely NiL2, CuL2, ZnL2, CdL2, PdL2 and PbL2, which have been characterized by physicochemical techniques and spectroscopic methods. Single crystal structural analyses for NiL2, CuL2 and PdL2 show that these are square-planar complexes with each metal bischelated by the Schiff base in its deprotonated monoanionic form. In all three cases, the ligands show a trans configuration, although they crystallize in different space groups. All the metal complexes with the exception of the nickel derivative show a significant decrease in fluorescence intensity with respect to the free proligand HL. Free HL and all six complexes were tested for antibacterial activity against three pathogenic gram-negative organisms. The metal complexes show moderate although diverse activities; however, free HL as well as the copper(II) complex did not reveal any antibacterial activity against the tested organisms.  相似文献   

14.
Palladium(II) chloride complexes of o-alkyl substituted phosphanes were prepared in various solvents with the phosphane ligands o-methylphenyldiphenylphosphane, o-ethylphenyldiphenylphosphane, o-isopropylphenyldiphenylphosphane, o-cyclohexylphenyldiphenylphosphane and o-phenylphenyldiphenylphosphane. The structures of the complexes were characterized by 1H NMR and 31P NMR spectroscopy and elemental analysis. The X-ray structures of PdCl2(o-methylphenyldiphenylphosphane)2, PdCl2(o-isopropylphenyldiphenylphosphane)2, PdCl2(o-cyclohexylphenyldiphenylphosphane)2, PdCl2(o-phenylphenyldiphenylphosphane)2, [PdCl2(o-methylphenyldiphenylphosphane)]2, [PdCl2(o-ethylphenyldiphenylphosphane)]2 and [PdCl2(o-cyclohexylphenyldiphenylphosphane)]2 were also determined. We report a systematic, solvent-dependent method to prepare palladium(II) complexes of the aryl phosphines o-methylphenyldiphenylphosphane, o-cyclohexylphenyldiphenylphosphane and o-phenylphenyldiphenylphosphane with a desired nuclearity. We demonstrated that chlorinated solvents promote the formation of dinuclear chlorine-bridged palladium complexes for all five ligands. The ligands preferentially form mononuclear palladium complexes in other solvents where the starting materials are only weakly soluble in the solvent.  相似文献   

15.
The two new nickel(II) complexes, [Ni(HL)(L)](NO3)?H2O (1) and [Ni(L)2] (2) (where HL/L = N′-[(E)-phenyl(pyridin-2-yl)methylidene]benzohydrazide), have been synthesized and characterized by elemental analysis, spectroscopic, magnetic susceptibility, and cyclic voltammetric measurements. Single-crystal X-ray analysis of [Ni(HL)(L)](NO3)?H2O (1) and [Ni(L)2] (2) has revealed the presence of a distorted octahedral geometry around nickel(II). The X-ray and spectral characterizations have confirmed the existence of the keto-enol form of the ligands in the complexes. The electronic structures and spectral properties of the ligands and the complexes have been explained by DFT and TDDFT calculations. Superoxide dismutase activity of these complexes has also been measured.  相似文献   

16.
The synthesis, antineoplastic, cytotoxic, and antibacterial activities of Ru(II) complexes derived from quinazoline and thiosemicarbazone ligands are reported. These complexes have been prepared and characterized by UV-Vis, IR, 1H-NMR, FAB-mass spectroscopy, and elemental analysis. The ligands and resulting complexes were subjected to in vivo antineoplastic activity against a transplantable murine tumor cell line Ehrlich ascites carcinoma (EAC) and in vitro cytotoxic activity against human cancer cell line Molt 4/C8, CEM, and murine tumor cell line L 1210. The ruthenium complexes show promising biological activity especially in decreasing tumor volume and viable ascitic cell counts. These complexes prolonged the life span of mice bearing EAC tumors by 10–52%. In vitro evaluation of these ruthenium complexes revealed cytotoxic activity from 0.29 to 2.9?µmol?L?1 against Molt 4/C8, 0.22 to 2.1?µmol?L?1 against CEM and 0.42 to 4.7?µmol?L?1 against L1210 cell proliferation, depending on the nature of the compound. The metal complexes are more active than the parent ligand and exhibit mild to moderate antibacterial activity.  相似文献   

17.
The nanocomposite graphene oxide/8-aminoquinoline (GAQ) was prepared as modified electrode material for simultaneous determination of guanine and adenine. The prepared GAQ was characterized by SEM, TEM, FTIR, Raman, and UV-vis, which confirmed that the 8-aminoquinoline had been functionalized by covalent modification. The differential pulse voltammetry (DPV) proved the electrochemical properties of the GAQ, which exhibited good electrocatalytic activity and prominent synergistic effect for sensitive determination of guanine and adenine. The guanine and adenine both were detection by DPV showed good linearity with linear range covering 0.1–160 μM, and the detection limits (LOD) (S/N = 3) both were estimated to be 0.033 μM for guanine and adenine, respectively.  相似文献   

18.
The intrinsic chemical properties of the gaseous adenine radical cation were examined by using dual cell Fourier transform ion cyclotron resonance mass spectrometry. The adiabatic recombination energy of the radical cation (ionization energy of neutral adenine) was found by bracketing experiments to be 8.55 ± 0.1 eV (at 298 K; earlier literature values range from 8.3 to 8.9 eV). Based on this value, the heat of formation (ΔHf298) of the adenine radical cation is estimated to be 246 ± 3 kcal/mol. The acidity (ΔHacid298) of the adenine radical cation was bracketed to be 221 ± 2 kcal/mol. These thermochemical values suggest that the adenine radical cation reacts with neutral guanine by electron abstraction or proton transfer, with neutral cytosine by proton transfer, and via neither pathway with neutral thymine, molecular water or a sugar moiety of DNA (modeled by tetrahydrofuran). Experimental examination of the gas-phase reactivity of the adenine radical cation revealed a slow deuterium atom abstraction from perdeuterated tetrahydrofuran. Hence, in the absence of a nearby guanine or cytosine, the adenine radical cation may be able to abstract a hydrogen atom from a sugar moiety of DNA.  相似文献   

19.
A series of organotin(IV) complexes of type R2SnLCl [R = Ph, Bu, Et, Me] were prepared by reaction of diorganotindichloride(IV) with Schiff base ligands, L1 = (1-[(6-ethoxy-benzothiazol-2-ylimino)-methyl]-naphthalen-2-ol), L2 = (1-[(6-nitro-benzothiazol-2-ylimino)-methyl]-naphthalen-2-ol), L3 = (1-[(6-methoxy-benzothiazol-2-ylimino)-methyl]-naphthalen-2-ol) and L4 = (1-[(6-methyl-benzothiazol-2-ylimino)-methyl]-naphthalen-2-ol) obtained from 2-amino-6-substituted benzothiazole derivatives with 2-hydroxy-1-naphthaldehyde in 1:1 molar ratio. These organotin(IV) complexes were characterized by various spectroscopic techniques (1H, 13C and 119Sn NMR, FT-IR), and physical techniques (X-ray powder diffraction analysis and elemental analysis). The coordination of the prepared complexes has been planned as pentacoordinated around the central tin atom during which ligands coordinated to tin atom in bidentate manner acted as N, O donor system. The ligands and their complexes were screened for antibacterial and antifungal activities against Gram-positive bacteria Bacillus cereus (MTCC 10072), Staphylococcus aureus (NCIM 2901), Gram-negative bacteria Escherichia coli (MTCC 732), Pseudomonas aeruginosa (MTCC 424) and fungi Aspergillus niger (MTCC 9933) and Aspergillus flavus (ATCC 76801). The output of QSAR analysis indicated that topological parameters (molecular connectivity indices) were responsible for controlling the antimicrobial activity of the synthesized compounds.  相似文献   

20.
Summary Palladium(II) mixed ligand complexes with purine or pyrimidine and imidazole derivatives were prepared and characterized by i.r., Raman and electronic spectroscopy. The compounds have the general formula [Pd(L1)(L2)(X2)]; where L1 = adenine, guanine, hypoxanthine, cytosine, 2-aminopyrimidine, 4(6)-hydroxypyrimidine; L2 = N-methylimidazole, N-ethylimidazole or N-propylimidazole; X = Cl or Br. The complexes are square planar with cis-halogens. The purine, pyrimidine and imidazole bases act as monodentate ligands coordinated via the N(7) of purine and N(3) of pyrimidine and imidazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号