首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reactions of a racemic four-coordinate Ni(II) complex [Ni(rac-L)](ClO4)2 with l- and d-alanine in acetonitrile/water gave two six-coordinate enantiomers formulated as [Ni(RR-L)(l-Ala)](ClO4)·2CH3CN (1) and [Ni(SS-L)(d-Ala)](ClO4) (2) (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclo-tetradecane, Ala? = alanine anion), respectively. Evaporation from the remaining solutions gave two four-coordinate enantiomers characterized as [Ni(SS-L)](ClO4)2 (S-3) and [Ni(RR-L)](ClO4)2 (R-3), respectively. Single-crystal X-ray diffraction analyses of complexes 1 and 2 revealed that the Ni(II) atom has a distorted octahedral coordination geometry, being coordinated by four nitrogen atoms of L in a folded configuration, plus one carboxylate oxygen atom and one nitrogen atom of l- or d-Ala? in mutually cis-positions. Complexes 1 and 2 are supramolecular stereoisomers, constructed via hydrogen bonding between [Ni(RR-L)(l-Ala)]+ or [Ni(SS-L)(d-Ala)]+ monomers to form 1D hydrogen-bonded zigzag chains. The homochiral natures of complexes 1 and 2 have been confirmed by CD spectroscopy.  相似文献   

2.
Reactions of Ni(NO3)2 · 6H2O) in EtOH(iso-PrOH) with optically active bis(menthane) ethylene-diaminodioxime (H2L1), pinano-para-menthane ethylenediaminodioxime (H2L2), pinano-para-menthane propylenediaminodioxime (H2L3) and bis(pinane) propylenediaminodioxime (H2L4) were used to synthesize [Ni(H2L1)NO3[NO3 · 2H2O (I), [Ni(HL2)]NO3 (II), [Ni(HL3)]NO3 (III), and [Ni(HL4)]NO3 (IV). X-ray diffraction study of paramagnetic complex Ieff = 3.04 μB and diamagnetic complexes II and III revealed their ionic structures. A distorted octahedral polyhedron N4O2 in the cation of complex I is formed by the N atoms of tetradentate cycle-forming ligand, i.e., the H2L1 molecule, and the O atoms of the NO 3 ? anion acting as a bidentate cyclic ligand. In the cations of complexes II and III, containing a pinane fragment, the coordination core NiN4 has the shape of a distorted square formed on coordination of tetradentate cycle-forming ligands, i.e., anions of the starting dioximes. The structure of diamagnetic complex IV is likely to be similar to the structures of complexes II and III.  相似文献   

3.
Four homochiral coordination polymers incorporating two chiral reduced Schiff base ligands, namely, [Cu(L1)(H2O)]·H2O (1), [Zn2(L2)2] (2), [Co(L2)(H2O)] (3), and [Ni(L2)(H2O)] (4) (H2L1 = N-(4-carboxyl)benzyl-l-alanine, H2L2 = N-(4-carboxyl)benzyl-l-leucine) have been obtained by hydrothermal methods and characterized by physico-chemical and spectroscopic methods. X-ray crystallographic analysis reveals that complex 1 exhibits a chain structure with 1D channels. Complexes 24 all are 3D network structures with 1D channels in which the isobutyl group of the ligand points toward to the channel. Complex 2 displays strong photoluminescent emission in the purple region.  相似文献   

4.
Three new Pd(II) complexes of Schiff base ligands, namely, [Pd4(L1)4] (1), [Pd2(L2)2Cl2] (2) and [Pd(L3)2Cl2] (3) [HL 1 ?=?N-(benzylidene)-2-aminophenol; L 2 ?=?N-(2,4-dichlorobenzylidene)-2,6-diethylbenzenamine, L 3 ?=?4-(2,4-dichlorobenzylide-neamino)phenol] have been synthesized using solvothermal methods and characterized by elemental analysis, spectroscopy and single crystal X-ray diffraction. The crystal structures of the free ligands were also determined. The ??-oxygen-bridged tetranuclear cyclometallated Pd(II) complex (1) contains four nearly planar units, in which PdII is four-coordinate. Complex 2 is a ??-chloro-bridged dinuclear cyclometallated Pd(II) complex, whereas complex 3 is mononuclear. The Heck reactions of bromobenzene with acrylic acid catalyzed by complexes 1?C3 have also been studied.  相似文献   

5.
Three Ni(II) complexes of cresol-based Schiff-base ligands, namely [Ni2(L1)(NCS)3(H2O)2], (1) [Ni2(L2)(CH3COO)(NCS)2(H2O)] (2) and [Ni2(L3)(NCS)3] (3), (where L1 = 2,6-bis(N-ethylpyrrolidineiminomethyl)-4-methylphenolato, L2 = 2,6-bis(N-ethylpiperidineiminomethyl)-4-methylphenolato and L3 = 2,6-bis{N-ethyl-N-(3-hydroxypropyl iminomethyl)}-4-methylphenolato), have been synthesized and structurally characterized by X-ray single-crystal diffraction in addition to routine physicochemical techniques. Density functional theory calculations have been performed to understand the nature of the electronic spectra of the complexes. Complexes 1?C3 when reacted with 4-nitrophenyl phosphate in 50:50 acetonitrile?Cwater medium promote the cleavage of the O?CP bond to form p-nitrophenol and smoothly convert 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) either in MeOH or in MeCN medium. Phosphatase- and catecholase-like activities were monitored by UV?Cvis spectrophotometry and the Michaelis?CMenten equation was applied to rationalize all the kinetic parameters. Upon treatment with urea, complexes 1 and 2 give rise to [Ni2(L1)(NCS)2(NCO)(H2O)2] (1??) and [Ni2(L2)(CH3COO)(NCO)(NCS)(H2O)] (2??) derivatives, respectively, whereas 3 remains unaltered under same reaction conditions.  相似文献   

6.
Three binuclear Cu(II) complexes of two pyrimidine derived Schiff base ligands, 2-S-methyl-6-methyl-4-formyl pyrimidine-N(4)-ethyl thiosemicarbazone (HL1) and salicyl hydrazone of 2-hydrazino-4,6-dimethylpyrimidine (HL2), have been prepared. HL1 produces a bis(μ-thiolato) Cu(II) complex co-crystallizing with its mononuclear analog, [Cu2(L1)2(NO3)2][Cu(L1)(NO3)] (1). On the other hand HL2 shows versatility by producing two different classes of binuclear Cu(II) complexes, a bis(μ-phenoxo) complex [Cu2(L2)2(NO3)2] (2) and another a (μ-4,4′-bipyridyl) complex, [Cu2(L2)2(μ-4,4′-bipyridyl)(NO3)2] (3) under suitable conditions. All the three complexes show distorted square pyramidal geometry around each Cu atom but to a varied extent. Magnetic behavior of complex 1 shows that it is strongly ferromagnetic in nature whereas compounds 2 and 3 are weakly antiferromagnetic in nature. A magnetostructural correlation study combined with molecular modelling on complexes 1 and 2 has thrown light on the difference on magnetic interaction between the Cu atoms in these two complexes. Various factors that may be responsible for such differences are also explored. A novel and potentially useful pH dependant conversion of 3 to 2 has also been noticed.  相似文献   

7.
The syntheses of a mononuclear zinc(II) complex [ZnCl(L1)(Amp)] (I) and a mononuclear nickel(II) complex [Ni(L2)(HL2)](BF4) · 0.5H2O (II) (HL1 = 4-methyl-2-[(4-methylpyridin-2-ylimino) methyl]phenol, HL2 = 4-methyl-2-[(pyridin-2-ylmethylimino)methyl]phenol; Amp = 2-amino-4- methylpyridine) were prepared under microwave irradiation. The complexes were characterized by a combination of elemental analyses, and IR and electronic spectra. Their structures were further confirmed by single crystal X-ray crystallography (СIF files CCDC nos 1437737 (I), 1437738 (II)). The Zn atom in the monomeric complex I is in tetrahedral coordination. The Ni atoms in the dimeric complex II are in octahedral coordination. Crystals of the complexes are stabilized by hydrogen bonds. In order to evaluate the biological activity of the complexes, in vitro antibacterial against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa was assayed. The complexes have strong activity against Bacillus subtilis.  相似文献   

8.
Novel potentially bidentate NO Schiff base ligands, HL 1 and HL 2 derived from condensation reaction of 2′-methoxyphenyl-2-ethylamine with salicylaldehyde (HL 1 ) and with 2-hydroxy-4-methoxybenzaldehyde (HL 2 ), and their nickel complexes were synthesized and characterized by usual spectroscopic techniques such as FT-IR, UV–Vis, 1H NMR, 13C NMR and elemental analysis. It was revealed that the bidentate Schiff base ligands coordinate with Ni(II) ions yielding mononuclear complexes with 1:2 (metal/ligand) stoichiometry. This result has been determined by using X-ray crystallographic technique of HL 2 and the nickel complex derived from HL 1 (Ni(II)-2L 1 ). So, the structural studies showed that the two Ni(II) complexes adopt a square-planar geometry around the central metal ion. Cyclic voltammetry studies were investigated in 0.1 M TBAP in DMF solution and indicate that the nickel complexes show one reduction wave related to Ni(II)/Ni(I) redox couple. The electrocatalytical properties of these complexes were also studied in the same electrolyte medium. Their electrocatalytic performances have been tested toward the electroreduction reaction of bromocyclopentane and iodobenzene, showing a promoted activity in the case of the Ni(II)-2L 2 complex.  相似文献   

9.
New copper(II) complexes, [Cu2L1L2] · ClO4 (I) and [Ni(L3)2] (II), where L1 is the monoanionic form of 2-[1-(2-emthylaminoethylimino)ethyl]phenol, L2 is the dianionic form of N,N′-ethylene-bis(2-hydroxyacetophenonylideneimine), L3 is the mono-anionic form of 2-(1-iminoethyl)phenol, were prepared and characterized using elemental analysis, FT-IR spectroscopy, and X-ray single-crystal diffraction. In complex I, the Cu(1) atom is coordinated by the NNO tridentate ligand L1 and the two phenolate O atoms of L2, forming a square pyramidal geometry. The Cu(2) atom in complex I is coordinated by the NNOO tetradenate ligand L2, forming a square planar geometry. The Ni atom in complex II is coordinated by two phenolate O and two imine N atoms from two ligands L3, forming a square planar geometry. In the crystal structure of I, the perchlorate anions are linked to the dinuclear copper(II) complex cations through intermolecular N-H...O hydrogen bonds. In the crystal structure of II, the mononuclear nickel complex molecules are linked through intermolecular N-H...O hydrogen bonds, forming a trimer.  相似文献   

10.
The Ni(II) complexes [Ni(L)2](ClO4)2 (1) and [Ni(L)2(NO3)2] (2), where L is the Schiff base ligand of 4,5,9,13,14-pentaaza-benzo[b] triphenylene, were synthesized and characterized by physico-chemical and spectroscopic methods. Nano-sized particles of (1) were prepared both by sonochemistry (3) and solvothermal (4) methods. NiO nanoparticles were obtained by calcination of the nano-structure complexes at 500 °C. The structures of the nano-sized compounds were characterized by X-ray powder diffraction and scanning electron microscopy. The thermal stabilities of the bulk complexes (1–2) and nano-sized particles (3–4) were studied by thermogravimetric and differential scanning calorimetry. The catalytic activities of complexes of (1–4) are reported. The free Schiff base and its Ni(II) complexes have been screened for antibacterial activities against three Gram-positive bacteria. The metal complexes are more active than the free Schiff base. Electrochemical studies show that the Ni complexes undergo irreversible reduction in MeCN solution.  相似文献   

11.
Copper(II) salts were reacted with various quinoline aldehyde chalcogensemicarbazones to yield compounds formulated as Cu(HL)X2 · nH2O (I: HL = quinoline aldehyde thiosemicarbazone (HL1), X = ClO4, n = 2; II: HL = quinoline aldehyde 4-C2H5-thiosemicarbazone (HL1a), X = NO3, n = 0; III: HL = quinoline aldehyde semicarbazone (HL2), X = ClO4, n = 3 and IV: HL = quinoline aldehyde 4-Ph-semicarbazone (HL2a), X = NO3, n = 1). Regardless of the reagent ratio, the products were compounds having the metal: ligand ratio of 1: 1, where the organic ligand was coordinated tridentate in a molecular form. Single-crystal X-ray diffraction showed that, depending on the chalcogen atom in the organic ligand (S or O), the substituent in the 4th position (at the terminal nitrogen atom), and the specifics of the acido ligand, complexes I–IV had appreciably differing molecular structure organizations. The structures of I and III are formed by a 1D charged coordination polymer, ClO 4 ? anions, and water molecules and may be described by the formula [Cu(HL)(H2O)(ClO4)] n (ClO4) n · nH2O. Copper(II) coordination polyhedra in I and II are (4 + 2) and (4 + 1 + 1) tetragonal bipyramids, respectively. In II and IV, the structures are monomeric and can be described as [Cu(HL1a)(NO3)2] with the metal coordination polyhedron shaped as a (4 + 1) tetragonal pyramid in II and as [Cu(HL2a)(H2O)(NO3)](NO3) with the metal coordination polyhedron shaped as a (3 + 2) trigonal bipyramid in IV. The structure of II is built of molecular complexes, each comprising, apart from ligand HL1a, two monodentate coordinated NO 3 ? groups. The oxygen atom of one anion together with the NNS donor atom set of ligand HL1a form the base, and the oxygen atom of the other anion is in the apex of the coordination polyhedron. In IV, the structure is ionic and built of NO 3 ? anions and [Cu(HL2a)(H2O)(NO3)]+ complex cations, where a cationic coordination polyhedron has a trigonal-bipyramidal configuration with organic ligand HL2a positioned along the long edge. The bipyramidal base is made up by the oxygen atoms of the coordinated water molecule and monodentate nitrato group and the nitrogen atom N2 of the azomethyne group.  相似文献   

12.
Two octahedral complexes [Ni(HL1)2](ClO4)2 (1) and [Ni(HL2)2](ClO4)2 (2) and a square planar complex [Ni(HL3)]ClO4 (3) have been prepared, where [HL1 = 3-(2-amino-ethylimino)-butan-2-one oxime, HL2 = 3-(2-amino-propylimino)butan-2-one oxime] and H2L3 = 3-[2-(3-hydroxy-1-methyl-but-2-enylideneamino)-1-methyl-ethylimino]-butan-2-one oxime. All the complexes have been characterized by elemental analyses, spectral studies and room temperature magnetic moment measurements. The molecular structures of all three compounds were elucidated on the basis of X-ray crystallography; complexes 1 and 2 are seen to be the mer isomers.  相似文献   

13.
Nickel(II) complexes with 2,3-dihydroxybenzaldehyde N4-substituted thiosemicarbazone ligands (H3L1–H3L4) have been synthesized and characterized with the aim of evaluating the effect of N4 substitution in the thiosemicarbazone moiety on their coordination behavior and biological activities. Two series of nickel(II) complexes with the general formulae [Ni(H3L)(H2L)]ClO4 and [Ni2(HL)2] were characterized by analytical and spectral techniques. The molecular structure of one of the complexes, namely, [Ni(H3L4)(H2L4)]ClO4 was established by single crystal X-ray diffraction studies. The crystal structure of this complex revealed that two H3L4 ligands are coordinated to nickel(II) in different modes; one as a neutral tridentate ONS ligand and the other is as a monoanionic tridentate (ONS?) ligand. The antimicrobial activities of the compounds were tested against 25 bacterial strains via the disc diffusion method, and their minimum inhibitory concentration (MIC) and minimum microbicidal concentration were evaluated using microdilution methods. With a few exceptions, most of the compounds exhibited low-to-moderate inhibitory activities against the tested bacterial strains. However, the complexes [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) indicated higher inhibitory activity against Salmonella enterica ATCC 9068 (MIC values 15.7 and <15.7 μg/ml, respectively), compared with gentamicin as the positive control (MIC 25 μg/ml). Complex (7) also inhibited Streptococcus pneumoniae more efficiently (MIC 31.2 μg/ml), compared with gentamicin (MIC > 50 μg/ml). The toxicities of the compounds were tested on brine shrimp (Artemia salina), where no meaningful toxicity level was noted for both the free ligands and the complexes. The cytotoxicities of the compounds on cell viability were determined on MCF7, PC3, A375, and H413 cancer cells in terms of IC50; complexes [Ni(H3L3)(H2L3)]ClO4 (3), [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) exhibited significant cytotoxicity on the tested cell lines.  相似文献   

14.
The reactions of 3(5)-(4-methoxyphenyl)-5(3)-phenyl-1H-pyrazole (L 1 ) with nitric acid and 5-(4-benzyloxyphenyl)-3-(furan-2-yl)-1H-pyrazole(L 2 ) with hydrochloric acid produced [HL 1 · NO3] (Salt-1) and [HL 2 · Cl] (Salt-2). The structures of Salt-1 and Salt-2 were determined by single crystal X-diffraction. In Salt-1, HL 1 showed [2 + 2] binding of NO3 ? ions in the solid state to form dimer architecture with R 1 2 (4) and R 4 4 (14) graph sets. An anion directed one-dimensional anion-assisted helical chain with active participation of the chloride ion and protonated pyrazole via N–H···Cl hydrogen bonding in Salt-2. In addition, the protonated HL 2 molecules interacted with each other through weak C–H···π interactions resulting in the formation of another one-dimensional helical chain.  相似文献   

15.
The synthesis, IR and Raman spectroscopic study, and X-ray diffraction analysis of [Ni(HL1)3](L2)2 · 4H2O (I), where HL1 is phenylacetic acid hydrazide and L2 is the benzoate monoanion, have been performed. The structural units of a crystal of complex I are complex [Ni(HL1)3]2+ cations, (L2) anions, and crystallization water molecules. The nickel atom is coordinated to the three oxygen atoms at octahedron apices and the three nitrogen atoms of three bidentate chelate (О, N) ligands HL1 in cis,trans-meredianal (fac) conformation. The structural units of a crystal of complex I are bonded by a branched network of О–Н···О and N–H···O hydrogen bonds.  相似文献   

16.
A pair of structurally similar dinuclear oxovanadium(V) complexes, [VO2L1]2 (I) and [VO2L2]2 (II), where L1 and L2 are the mono-anionic form of 2-[(2-isopropylaminoethylimino)methyl]-4-methylphenol (HL1) and 4-fluoro-2-[(2-isopropylaminoethylimino)methyl]phenol (HL2), respectively, have been synthesized and characterized by elemental analysis, FT-IR spectra, and single crystal X-ray determination. The crystal of I is monoclinic: space group P21/c, a = 12.528(1), b = 12.266(1), c = 9.432(1) Å, β = 104.814(3)°, V = 1401.2(3) Å3, Z = 2. The crystal of I is monoclinic: space group P21/n, a = 12.3128(5), b = 6.5124(3), c = 17.1272(7) Å, β = 105.863(1)°, V = 1321.1(1) Å3, Z = 2. The V…V distances are 3.210(1) Å in I and 3.219(1) Å in II. The V atoms in the complexes are in octahedral coordination. Biological assay indicates that complex II, bearing fluoro-substitute groups, has stronger antimicrobial activity against most bacteria than complex I which bearing methyl-substitute groups.  相似文献   

17.
Reaction of tridentate Schiff bases with nickel and cadmium salts in methanol afforded two new mononuclear complexes, [Ni(L1)2] (I) and [Cd(L2)2] (II), where L1 and L2 are the anions of 2-bromo-4-chloro-6-[(3-dimethylaminopropylimino)methyl]phenol (HL1) and 2-bromo-4-chloro-6-[(3-morpholin-4-ylpropylimino)methyl]phenol (HL2), respectively. The complexes were characterized by singlecrystal X-ray diffraction (CIF files CCDC nos. 1428653 (I) and 1428654 for (II)), FT-IR, and elemental analysis. Complex I crystallizes in the monoclinic space group P2 1/c, with a = 8.8216(8), b = 14.0424(8), c = 11.8687(12) Å, β = 111.238(2)°, V = 1370.4(2) Å3, Z = 2. Complex II crystallizes in the monoclinic space group P2 1/n, with a = 9.6774(4), b = 15.8970(6), c = 20.3144(7) Å, β = 90.408(2)°, V = 3125.1(2) Å3, Z = 4. The metal atoms in the complexes are coordinated by two tridentate Schiff base ligands, forming octahedral coordination. The free Schiff bases and the complexes were assayed for antibacterial activities. Both complexes are more active against the bacteria than the free Schiff bases. Complex II has the MIC value of 0.39 μg mL–1 against Bacillus subtilis.  相似文献   

18.
Two Pd(II) complexes involving Schiff base ligands, namely, [Pd(L1)2] (1), [Pd2(L2)Cl2] (2) [HL1 = 2-((2,6-diisopropylphenylimino)methyl)-4,6-dibromophenol, L2 = N-(4-isopropylbenzylidene)-2,6-diisopropylbenzenamine] have been synthesized using solvothermal methods and characterized by elemental analysis, IR-spectroscopy, thermogravimetric analysis, powder X-ray diffraction, UV–vis absorption spectra, and single-crystal X-ray diffraction. Complex 1 is a mononuclear cyclometalated Pd(II) complex, whereas complex 2 is a μ-chloro-bridged dinuclear. Both 1 and 2 display photoluminescence in the solid state at 298 K and possess fluorescence lifetimes (τ 1 = 86.40 ns, τ 2 = 196.21 ns, τ 3 = 1,923.31 ns at 768 nm for 1, τ 1 = 69.92 ns, τ 2 = 136.40 ns, τ 3 = 1,714.26 ns at 570 nm for 2). The Suzuki reactions of 4-bromotoluene with phenylboronic acid by complexes 12 have also been studied.  相似文献   

19.
Two new Schiff base ligands 2-chloro-N′-(5-fluoro-2-hydroxybenzylidene)benzohydrazide (H2La) and 4-fluoro-2-{[2-(2-hydroxyethylamino)ethylimino]methyl}phenol (HLb) were synthesized and characterized. Their respective oxidovanadium complexes, [VOLa(OMe)(MeOH)]·MeOH (1) and [VO(μ-O)Lb]2 (2), were synthesized and characterized by spectroscopy and single-crystal X-ray diffraction. The coordination sphere of each V atom is octahedral. Both complexes showed selective heterogeneous catalytic properties with 74–98 % conversion, for the oxidation of cyclohexene, cyclopentene, and benzyl alcohol using H2O2 as primary oxidant.  相似文献   

20.
Acid?Cbase equilibria of the aqua adducts of Ru(II) arene complexes, general formulae [(??6-p-cymene)Ru (L1?3)Cl2] where L1?=?3-acetylpyridine (1), L2?=?4-acetylpyridine (2) and L3?=?2-amino-5-chloropyridine (3), then [(??6-p-cymene)Ru(HL4)Cl2] with HL4?=?isonicotinic acid (4); [(??6-p-cymene)Ru(HL5?8)Cl] where H2L5?=?2,3-pyridine dicarboxylic acid (5), H2L6?=?2,4-pyridine dicarboxylic acid (6), H2L7?=?2,5-pyridine dicarboxylic acid (7) and H2L8?=?2,6-pyridine dicarboxylic acid (8) have been studied. pK a values were determined by potentiometry at 25?°C and constant ionic strength of 0.1?M NaNO3. The assumed equilibria were confirmed by UV and 1H-NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号