首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A three-step method to determine the eutectic composition of a binary or ternary mixture is introduced. The method consists in creating a temperature–composition diagram, validating the predicted eutectic composition via differential scanning calorimetry and subsequent T-History measurements. To test the three-step method, we use two novel eutectic phase change materials based on \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm O}\) and \(\mathrm{NH}_4\mathrm{NO}_3\)   respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\hbox {O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) with equilibrium liquidus temperatures of 12.4 and 3.9  \(\,^{\circ }\mathrm {C}\) respectively with corresponding melting enthalpies of 135 J \(\mathrm{g}^{-1}\) (237 J \(\mathrm{cm}^{-3}\) ) respectively 133 J \(\mathrm{g}^{-1}\) (225 J \(\mathrm{cm}^{-3}\) ). We find eutectic compositions of 75/25 mass% for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) and 73/27 mass% for \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) . Considering a temperature range of 15 K around the phase change, a maximum storage capacity of about 172 J \(\mathrm{g}^{-1}\) (302 J \(\mathrm{cm}^{-3}\) ) respectively 162 J \(\mathrm{g}^{-1}\) (274 J \(\mathrm{cm}^{-3}\) ) was determined for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) .  相似文献   

2.
Fourier transform infrared spectroscopy of \(\hbox {CH}_{4}/\hbox {N}_{2}\) and \(\hbox {C}_{2}\hbox {H}_{m}/\hbox {N}_2\) ( \(m = 2, 4, 6\) ) gas mixtures in a medium pressure (300 mbar) dielectric barrier discharge was performed. Consumption of the initial gas and formation of other hydrocarbon and of nitrogen-containing HCN and \(\hbox {NH}_{3}\) molecules was observed. \(\hbox {NH}_{3}\) formation was further confirmed by laser absorption measurements. The experimental result for \(\hbox {NH}_{3}\) is at variance with simulation results.  相似文献   

3.
The effects of adding an antagonistic salt, sodium tetraphenylborate ( \(\hbox {NaBPh}_4\) ), to a binary mixture of deuterated water and 2,6-dimethylpyridine were investigated by visual inspection, optical microscopy, and small-angle neutron scattering. With increasing salt concentration, the two-phase region shrinks. When the concentration of \(\hbox {NaBPh}_4\) is \(85\hbox { mmol}{\cdot} \hbox {L}^{-1}\) , a temperature-induced lamellar/disorder phase transition is observed at 338 K. These trends are similar to those observed for a mixture of water/3-methylpyridine/ \(\hbox {NaBPh}_4\) (Sadakane et al., Phys. Rev. Lett. 103, 167803 (2009)).  相似文献   

4.
The reaction quotient Q can be expressed in partial pressures as $\hbox {Q}_\mathrm{P}$ or in mole fractions as $\hbox {Q}_{\mathrm{x}}$ . $\hbox {Q}_\mathrm{P}$ is ostensibly more useful than $\hbox {Q}_{\mathrm{x}}$ because the related $\hbox {K}_{\mathrm{x}}$ is a constant for a chemical equilibrium in which T and P are kept constant while $\hbox {K}_{\mathrm{P}}$ is an equilibrium constant under more general conditions in which only T is constant. However, as demonstrated in this work, $\hbox {Q}_{\mathrm{x}}$ is in fact more important both theoretically and technically. The relationships between $\hbox {Q}_{\mathrm{x}}$ , $\hbox {Q}_\mathrm{P}$ , and $\hbox {Q}_{\mathrm{C}}$ are discussed. Four examples of applications are given in detail.  相似文献   

5.
After the RS-stereoisomeric group \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) of order 16 has been defined by starting point group \(\mathbf{D}_{2d}\) of order 8, the isomorphism between \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) and the point group \(\mathbf{D}_{4h}\) of order 16 is thoroughly discussed. The non-redundant set of subgroups (SSG) of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) is obtained by referring to the non-redundant set of subgroups of \(\mathbf{D}_{4h}\) . The coset representation for characterizing the orbit of the four positions of an allene skeleton is clarified to be \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{s\widetilde{\sigma }\widehat{I}})\) , which is closely related to the \(\mathbf{D}_{4h}(/\mathbf{C}_{2v}^{\prime \prime \prime })\) . According to the unit-subduced-cycle-index (USCI) approach (Fujita, Symmetry and combinatorial enumeration of chemistry. Springer, Berlin 1991), the subduction of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{s\widetilde{\sigma }\widehat{I}})\) is examined so as to generate unit subduced cycle indices with chirality fittingness (USCI-CFs). Then, the fixed-point matrix method of the USCI approach is applied to the USCI-CFs. Thereby, the numbers of quadruplets are calculated in an itemized fashion with respect to the subgroups of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) . After the subgroups of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) are categorized into types I–V, type-itemized enumeration of quadruplets is conducted to illustrate the versatility of the stereoisogram approach.  相似文献   

6.
Treatment of the electronically unsaturated 4-methylquinoline triosmium cluster $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu_3\hbox{-}\upeta^{2}\hbox{-}\hbox{C}_{9}\hbox{H}_{5} \hbox{(4-Me)N})(\upmu\hbox{-H})]$ (1) with tetramethylthiourea in refluxing cyclohexane at 81°C gave $[\hbox{Os}_{3}\hbox{(CO)}_{8}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5} \hbox{(4-Me)N})(\upeta^2\hbox{-SC}(\hbox{NMe}_2\hbox{NCH}_2\hbox{Me})(\upmu \hbox{-H})_2]$ (2) and $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5}\hbox{(4-Me)N})(\upeta^1\hbox{-SC}(\hbox{NMe}_2)_2)(\upmu\hbox{-H})]$ (3). In contrast, a similar reaction of the corresponding quinoline compound $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu_{3}\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N})(\upmu\hbox{-H})]$ (4) with tetramethylthiourea afforded $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N})(\upeta^{1}\hbox{-SC(NMe}_{2})_{2})(\upmu\hbox{-H)}]$ (5) as the only product. Compound 2 contains a cyclometallated tetramethylthiourea ligand which is chelating at the rear osmium atom and a quinolyl ligand coordinated to the Os3 triangle via the nitrogen lone pair and the C(8) atom of the carbocyclic ring. In 3 and 5, the tetramethylthiourea ligand is coordinated at an equatorial site of the osmium atom, which is also bound to the carbon atom of the quinolyl ligand. Compounds 3 and 5 react with PPh3 at room temperature to give the previously reported phosphine substituted products $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu \hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5}\hbox{(4-Me)N)(PPh}_{3})(\upmu\hbox{-H)}]$ (6) and $[\hbox{Os}_{3}\hbox{(CO}_{9}(\upmu \hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N)(PPh}_{3})(\upmu\hbox{-H)}]$ (7) by the displacement of the tetramethylthiourea ligand.  相似文献   

7.
The acid?Cbase behavior of $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$ was investigated by measuring the formal potentials of the $\mathrm{Fe}(\mathrm{CN})_{6}^{3-}$ / $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$ couple over a wide range of acidic and neutral solution compositions. The experimental data were fitted to a model taking into account the protonated forms of $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$ and using values of the activities of species in solution, calculated with a simple solution model and a series of binary data available in the literature. The fitting needed to take account of the protonated species $\mathrm{HFe}(\mathrm{CN})_{6}^{3-}$ and $\mathrm{H}_{2}\mathrm{Fe}(\mathrm{CN})_{6}^{2-}$ , already described in the literature, but also the species $\mathrm{H}_{3}\mathrm{Fe}(\mathrm{CN})_{6}^{-}$ (associated with the acid?Cbase equilibrium $\mathrm{H}_{3}\mathrm{Fe}(\mathrm{CN})_{6}^{-}\rightleftharpoons \mathrm{H}_{2}\mathrm{Fe}(\mathrm{CN})_{6}^{2-} + \mathrm{H}^{+}$ ). The acidic dissociation constants of $\mathrm{HFe}(\mathrm{CN})_{6}^{3-}$ , $\mathrm{H}_{2}\mathrm{Fe}(\mathrm{CN})_{6}^{2-}$ and $\mathrm{H}_{3}\mathrm{Fe}(\mathrm{CN})_{6}^{-}$ were found to be $\mathrm{p}K^{\mathrm{II}}_{1}= 3.9\pm0.1$ , $\mathrm{p}K^{\mathrm{II}}_{2} = 2.0\pm0.1$ , and $\mathrm{p}K^{\mathrm{II}}_{3} = 0.0\pm0.1$ , respectively. These constants were determined by taking into account that the activities of the species are independent of the ionic strength.  相似文献   

8.
Enumeration of molecules is one of the fundamental problems in bioinformatics and chemoinformatics which is also important from a practical viewpoint. We consider the problem of enumerating the stereo-isomers of tree-like polyinositol molecules (with chemical formula $\hbox {C}_{6n}\hbox {O}_{5n+6}\hbox {H}_{4n+2}$ where $n$ is the number of hexagonal oinositol rings) and monosubstituted tree-like polyinositols (with chemical formula $\hbox {C}_{6n}\hbox {O}_{5n+6}\hbox {H}_{4n+1}\hbox {Z}$ ). We establish recursion counting formulas for the numbers of the stereo-isomers for these two classes of molecules, in which chirality is also taken into account. In our study, the generating function, Pólya enumeration theory and ‘Dissimilarity Characteristic Theorem’ play important roles. Compared to some known computer programs such as ISOMERS, MOLGEN, exhaustive construction and Dynamic Programming etc., our method is more efficient to our enumeration problem with larger number of inositol rings. Further more, based on the obtained recursion formulas, we derive the asymptotic values for the numbers of these two stereo-isomers from which we conclude that almost all tree-like and monosubstituted tree-like polyinositols are chiral.  相似文献   

9.
The structure and the stability of pentazolide compounds $\hbox{A}_{\it n}(\hbox{N}_5)_{\rm 6-{\it n}}^{\it q}$ (A = B, Al, Si, P, and S; n= 1–3; q = +1, 0, ?1, ?2, and ?3), as high energy-density materials (HEDMs), have been investigated at the B3LYP/6-311+G* level of theory. The natural bond orbital analysis shows that the charge transfer plays an important role when the $\hbox{A}_{\it n}(\hbox{N}_5)_{\rm 6-{\it n}}^{\it q}$ species are decomposed to $\hbox{A}_{\it n}(\hbox{N}_5)_{\rm 5-{\it n}}\hbox{N}_3^{\it q}$ and N2. The more negative charges are transferred from the N2 molecule after breaking the N5 ring, the more stable the systems are with respect to the decomposition. Moreover, the conclusion can be drawn that ${\hbox{Al}(\hbox{N}_5)_5^{2-}}$ and ${\hbox{Al}_2(\hbox{N}_5)_4^{2-}}$ are predicted to be suitable as potential HEDMs.  相似文献   

10.
Quantitative structure-property relationship for the thermal decomposition of polymers is suggested. The data on architecture of monomers is used to represent polymers. The structures of monomers are represented by simplified molecular input-line entry system. The average statistical quality of the suggested quantitative structure-property relationships for prediction of molar thermal decomposition function $\hbox {Y}_{\mathrm{d},1/2}$ is the following: $\hbox {r}^{2}=0.970 \pm 0.01$ and $\hbox {RMSE}=4.71\pm 1.01\,(\hbox {K}\times \hbox {kg}\times \hbox {mol}^{-1})$ .  相似文献   

11.
Cellulose nanofibrils (CNF) from wood fibers are of increasing interest to industry because they are from renewable sources and are biodegradable. Owing to their high aspect ratio, they produce viscous suspensions and stiff gels that are strengthened by interfibrillar hydrogen bonds. In this study, the viscosity of aqueous CNF suspensions, at dilute concentrations ( \(nL^{3}<1\) ), was measured at various pH values by addition of HCl, and at various ionic strengths by addition of NaCl and \(\hbox {CaCl}_{2}\) . The results show that the primary electroviscous effect significantly increases the intrinsic viscosity. The intrinsic viscosity under conditions where the surface charge of nanofibrils is fully screened is in good agreement with the predictions of classical theory for dispersions of rodlike particles at low shear rates. Increasing the ionic strength up to \(\kappa d\approx 1\) decreases the intrinsic viscosity; at \(\kappa d>1\) , the intrinsic viscosity increases because of fibril aggregation and increase of the effective volume fraction.  相似文献   

12.
The heat capacity and density of potassium iodide solutions in a mixed N-methylpyrrolidone (MP)-water solvent with a low content of the organic component are measured via calorimetry and densimetry at 298.15 K. Standard partial molal heat capacities \(\bar C_{p,2}^ \circ \) and volumes \(\bar V_2^ \circ \) of potassium iodide in MP-water mixtures are calculated. Standard heat capacities \(\bar C_{p,i}^ \circ \) and volumes \(\bar V_i^ \circ \) of potassium and iodide ions are determined. The character of the changes in heat capacity and volume are discussed on the basis of calculating additivity coefficients δ c and δ v upon the mixing of isomolal binary solutions KI-MP and KI-water, depending on the composition of the MP-H2O mixture and the concentration of the electrolyte.  相似文献   

13.
Cathodic materials $ {\hbox{N}}{{\hbox{d}}_{{{2} - x}}}{\hbox{S}}{{\hbox{r}}_x}{\hbox{Fe}}{{\hbox{O}}_{{{4} + \delta }}} $ (x?=?0.5, 0.6, 0.8, 1.0) with K2NiF4-type structure, for use in intermediate-temperature solid oxide fuel cells (IT-SOFCs), have been prepared by the glycine?Cnitrate process and characterized by XRD, SEM, AC impedance spectroscopy, and DC polarization measurements. The results have shown that no reaction occurs between an $ {\hbox{N}}{{\hbox{d}}_{{{2} - x}}}{\hbox{S}}{{\hbox{r}}_x}{\hbox{Fe}}{{\hbox{O}}_{{{4} + \delta }}} $ electrode and an Sm0.2Gd0.8O1.9 electrolyte at 1,200?°C, and that the electrode forms a good contact with the electrolyte after sintering at 1,000?°C for 2?h. In the series $ {\hbox{N}}{{\hbox{d}}_{{{2} - x}}}{\hbox{S}}{{\hbox{r}}_x}{\hbox{Fe}}{{\hbox{O}}_{{{4} + \delta }}} $ (x?=?0.5, 0.6, 0.8, 1.0), the composition $ {\hbox{N}}{{\hbox{d}}_{{{1}.0}}}{\hbox{S}}{{\hbox{r}}_{{{1}.0}}}{\hbox{Fe}}{{\hbox{O}}_{{{4} + \delta }}} $ shows the lowest polarization resistance and cathodic overpotential, 2.75????cm2 at 700?°C and 68?mV at a current density of 24.3?mA?cm?2 at 700?°C, respectively. It has also been found that the electrochemical properties are remarkably improved the increasing Sr content in the experimental range.  相似文献   

14.
Densities, ??, and viscosities, ??, of binary mixtures of 2-methyl-2-propanol with acetone (AC), ethyl methyl ketone (EMK) and acetophenone (AP), including those of the pure liquids, were measured over the entire composition range at 298.15, 303.15 and 308.15?K. From these experimental data, the excess molar volume $V_{\mathrm{m}}^{\mathrm{E}}$ , deviation in viscosity ????, partial and apparent molar volumes ( $\overline{V}_{\mathrm{m},1}^{\,\circ }$ , $\overline{V}_{\mathrm{m},2}^{\,\circ }$ , $\overline{V}_{\phi ,1}^{\,\circ}$ and $\overline{V}_{\phi,2}^{\,\circ} $ ), and their excess values ( $\overline{V}_{\mathrm{m},1}^{\,\circ \mathrm{E}}$ , $\overline{V}_{\mathrm{m,2}}^{\,\circ \mathrm{ E}}$ , $\overline {V}_{\phi \mathrm{,1}}^{\,\circ \mathrm{ E}}$ and $\overline{V}_{\phi \mathrm{,2}}^{\,\circ \mathrm{ E}}$ ) of the components at infinite dilution were calculated. The interaction between the component molecules follows the order of AP > AC > EMK.  相似文献   

15.
The RS-stereoisomeric group $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ is examined to characterize quadruplets of RS-stereoisomers based on a tetrahedral skeleton and found to be isomorphic to the point group $\mathbf{O}_{h}$ of order 48. The non-redundant set of subgroups (SSG) of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ is obtained by referring to the non-redundant SSG of $\mathbf{O}_{h}$ . The coset representation for characterizing the orbit of the four positions of the tetrahedral skeleton is clarified to be $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{3v\widetilde{\sigma }\widehat{I}})$ , which is closely related to the $\mathbf{O}_{h}(/\mathbf{D}_{3d})$ . According to the unit-subduced-cycle-index (USCI) approach (Fujita in Symmetry and combinatorial enumeration in chemistry. Springer, Berlin, 1991), the subdution of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{3v\widetilde{\sigma }\widehat{I}})$ is examined so as to generate unit subduced cycle indices with chirality fittingness (USCI-CFs). The fixed-point matrix method of the USCI approach is applied to the USCI-CFs. Thereby, the numbers of quadruplets are calculated in an itemized fashion with respect to the subgroups of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ . After the subgroups of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ are categorized into types I–V, type-itemized enumeration of quadruplets is conducted to illustrate the versatility of the stereoisogram approach.  相似文献   

16.
The densities, ρ, refractive indices, n D, and ultrasonic speeds, u, of binary mixtures of acetonitrile (AN) with poly(ethylene glycol) 200 (PEG200), poly(ethylene glycol) 300 (PEG300) and poly(ethylene glycol) 400 (PEG400) were measured over the entire composition range at temperatures (298.15, 303.15, 308.15 and 313.15) K and at atmospheric pressure. From the experimental data, the excess molar volumes, \( V_{\text{m}}^{\text{E}} \) , deviations in refractive indices, \( \Delta n_{\text{D}} \) , excess molar isentropic compressibility, \( K_{{s , {\text{m}}}}^{\text{E}} \) , excess intermolecular free length, \( L_{\text{f}}^{\text{E}} \) , and excess acoustic impedance, Z E, have been evaluated. The partial molar volumes, \( \overline{V}_{\text{m,1}} \) and \( \overline{V}_{\text{m,2}} \) , partial molar isentropic compressibilities, \( \overline{K}_{{s , {\text{m,1}}}} \) and \( \overline{K}_{{s , {\text{m,2}}}} \) , and their excess values over whole composition range and at infinite dilution have also been calculated. The variations of these properties with composition and temperature are discussed in terms of intermolecular interactions in these mixtures. The results indicate the presence of specific interactions among the AN and PEG molecules, which follow the order PEG200 < PEG300 < PEG400.  相似文献   

17.
The phase diagram of the pyridine–iron(III) chloride system has been studied for the 223–423 K temperature and 0–56 mass-% concentration ranges using differential thermal analysis (DTA) and solubility techniques. A solid with the highest pyridine content formed in the system was found to be an already known clathrate compound, [FePy3Cl3]·Py. The clathrate melts incongruently at 346.9 ± 0.3 K with the destruction of the host complex: [FePy3Cl3]·Py(solid)=[FePy2Cl3](solid) + liquor. The thermal dissociation of the clathrate with the release of pyridine into the gaseous phase (TGA) occurs in a similar way: [FePy3Cl3]·Py(solid)=[FePy2Cl3](solid) + 2 Py(gas). Thermodynamic parameters of the clathrate dissociation have been determined from the dependence of the pyridine vapour pressure over the clathrate samples versus temperature (tensimetric method). The dependence experiences a change at 327 K indicating a polymorphous transformation occurring at this temperature. For the process ${1 \over 2}[\hbox{FePy}_{3}\hbox{Cl}_{3}]\cdot \hbox{Py}_{\rm (solid)} = {1 \over 2}[\hbox{FePy}_{2}\hbox{Cl}_{3}]_{\rm (solid)} + \hbox{Py}_{\rm (gas)}$ in the range 292–327 K, ΔH $^{0}_{298}$ =70.8 ± 0.8 kJ/mol, ΔS $^{0}_{298}$ =197 ± 3 J/(mol K), ΔG $^{0}_{298}$ =12.2 ± 0.1 kJ/mol; in the range 327–368 K, ΔH $^{0}_{298}$ =44.4 ± 1.3 kJ/mol, ΔS $^{0}_{298}$ =116 ± 4 J/(mol K), ΔG $^{0}_{298}$ =9.9 ± 0.3 kJ/mol.  相似文献   

18.
The coefficients \(c_{k}\) (k = 2, 4, 6) that pertain to spin-correlated matrix elements of the tensor operator \({{\varvec{U}}}^{{\varvec{(k)}}}\) have been evaluated by means of the differences \({{\varvec{U}}}^{{\varvec{(k)}}}\) (intermediate) \(-\) \({{\varvec{U}}}^{{\varvec{(k)}}}\) (LS) and the reduced matrix elements of the operator \({{\varvec{V}}}^{{\varvec{(1k)}}}\) . Only spin-allowed transitions have been considered from each ground level to the excited energy levels within the \(4\hbox {f}^{2}\) and \(4\hbox {f}^{12}\) configurations of the free ions Pr (3+) and Tm (3+), respectively. The values of the coefficients \(c_{k}\) thus found correspond in most cases by sign and order of magnitude to those determined in other sources as corrections to lanthanide (3+) crystal-field parameters.  相似文献   

19.
The intermediate and LS-coupling schemes for the free lanthanide ions $\text{ Pr }^{3+}$ Pr 3 + and $\text{ Tm }^{3+}$ Tm 3 + have been compared by the matrix elements of the tensor operator ${{\varvec{U}}}^{({\varvec{k}})}, \text{ k } = 2, 4, 6$ U ( k ) , k = 2 , 4 , 6 . The necessary eigenvectors and eigenvalues have been computed with the aid of four parameters, $\text{ F }_{2}, \text{ F }_{4}, \text{ F }_{6}$ F 2 , F 4 , F 6 , and $\zeta _{4\mathrm{f}}$ ζ 4 f , known from free-ion spectra of the same ions. It has been found that both coupling types for each ion lead to close values of ${\vert }{{\varvec{U}}}^{({\varvec{k}})}{\vert }^{2}$ | U ( k ) | 2 only for transitions from the ground level to certain lower-lying energy levels within the $4\text{ f }^\mathrm{N}$ 4 f N configuration.  相似文献   

20.
The influence of the addition of O2 on the OH production in a He + 0.1 % H2O discharge is investigated using laser induced fluorescence. The plasma properties $(T_{\rm g},\;n_{\rm e})$ are reported and used to explain the observed time and spatially resolved OH density, which is absolutely calibrated using Rayleigh scattering. Compared to the case when only H2O is added, an increase in the measured OH density is observed in the far afterglow. A zero-dimensional chemical kinetic model is constructed, which allows to determine the reactions responsible for the OH production in the far afterglow. When O2 is admixed, the key reaction $\hbox{O} + \hbox{OH} \longrightarrow \hbox{O}_{2} + \hbox{H}$ causes quenching of OH and production of increased densities of H, HO2 and H2O2, which subsequently leads to additional OH production in the late afterglow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号