首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel reactive layered two-dimensional molecular space material [layered chloroacetamide phenyl silica (CAAPhS)] with regular chlorine groups was synthesized by grafting chlorine groups into the layer structure of layered aminophenyl silica. The reactive activity of chlorine groups regularly arranged in the layer structure of layered CAAPhS was confirmed through a substitution reaction with n-butylamine. Layered CAAPhS showed potential as a starting material for the formation of a series of two-dimensional layered materials with various regular functional molecules and organic-inorganic composite materials.  相似文献   

2.
A novel organic-inorganic hybrid 2D molecular space with regular triphenylphosphine groups (triphenylphosphineamidephenylsilica, PPh(3)APhS) was successfully synthesized through grafting triphenylphosphine groups in the 2D structure of layered aminophenylsilica dodecyl sulfate (APhTMS-DS), which was developed in our previous research, with regular ammonium groups. The 2D structures were kept after the grafting reaction of triphenylphosphine groups in PPh(3)APhS. The catalytic potentials of 2D molecular space with regular triphenylphosphine groups were investigated. An unusual catalytic effect was found in a carbon-phosphorus ylide reaction. The PPh(3)-catalyzed reaction of modified allylic compounds, including bromides and chlorides with tropone yielded a [3 + 6] annulation product. However, an unusual [8 + 3] cycloadduct was obtained in the reaction of modified allylic compounds, including bromides and chlorides with tropone catalyzed by PPh(3)APhS. Otherwise, the stable catalytic intermediate was successfully separated, and the reaction activity of the catalytic intermediate was confirmed in the reaction of modified allylic compounds with tropone catalyzed by PPh(3)APhS. This research is the first successful example of directly influencing catalytic reaction processes and product structures by utilizing the chemical and geometrical limits of 2D molecular spaces with regular catalyst molecules and affords a novel method for controlling catalytic reaction processes and catalyst design.  相似文献   

3.
End groups of poly(ethyleneglycol sebacate) having number average molecular weights less than 2500 were characterized as a function of molecular size by derivatizing end groups separately to form 3,5-dinitrobenzoyl and p-nitrobenzyl esters. A hydroxyl end group was reacted with 3,5-dinitrobenzoyl chloride (DNBC) and a carboxyl end group was reacted with O-(p-nitrobenzyl)-N,N′-diisopropyl isourea (PNBD). After separation of these derivatized polyesters by size-exclusion chromatography, the effluent was monitored by using a highly sensitive infrared detector. Concentrations of polyesters were monitored at 1740 cm?1 for a carbonyl group in the main chain, polyesters derivatized with DNBC at 1560 cm?1 for a hydroxyl end group (characteristic absorption band for the nitro group of DNBC), and polyesters derivatized with PNDB at 1537 cm? for a carboxyl end group (a characteristic absorption band for the nitro group of PNBD). By this technique, three types of polyesters having different end groups were characterized: a diol-type polyester, a mixture of polyesters of a diol type and a mono-ol/monocarboxyl type, and a mixture of polyesters of a dicarboxyl type a mono-ol/monocarboxyl type.  相似文献   

4.
The effect of exogenous hydroxyl, carboxyl groups and/or Sn~(2+) on pyrolysis reactions of poly(L-lactide)(PLLA) was investigated by thermogravimetric analysis(TGA). The activation energy(E_a) of pyrolysis reactions was estimated by the Kissinger-Akahira-Sunose method. The kinetic models were also explored by the Malek method, and the random degradation behavior was determined by comparing the plots of ln{-ln[1-(1-w)~(0.5)]} versus 1/T for experimental data from TGA with model reactions. The pyrolysis reaction rate of PLLA was affected slightly by exogenous hydroxyl and carboxyl groups at lower levels of Sn with 65-70 mg·kg~(-1) but increased appreciably in the presence of extraneous Sn~(2+), ―COOH/Sn~(2+), or ―OH/Sn~(2+). The E_a values for the pyrolysis reactions of the PLLAs that provided lactide were different under the catalysis of Sn~(2+) in different chemical environments because Sn~(2+) can form the new Sn-carboxylate and Sn-alkoxide with exogenous carboxyl and hydroxyl groups, which were different in steric hindrance for the formation of activated complex between Sn~(2+) and PLLA. Under the catalysis of Sn~(2+), a lactide molecule can be directly eliminated selectively at a random position of PLLA molecular chains, and the molecular chain of PLLA cannot change two PLLA fragments at the elimination site of lactide. However, it was regenerated into a new PLLA molecule with the molecular weight reduced by 144 g·mol~(-1).  相似文献   

5.
Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy and quantum chemical calculations were used to elucidate the influence of solution chemistry (pH, amino acid concentration) on the binding mechanisms of glutamic and aspartic acid to rutile (α-TiO(2)). The amino acids, glutamate and aspartate, contain carboxyl and amine groups whose dissociation over a pH range results in changes of molecular charge and reactivity, including reactions with mineral surfaces. At pH 3, a decrease of IR bands corresponding to protonated carboxyl groups is observed upon reaction with TiO(2) and indicates involvement of distal carboxyl groups during sorption. In addition, decreased IR bands arising from carboxyl bonds at 1400 cm(-1), concomitant to shifts to higher wavenumbers for ν(as)(γ-COO(-)) and ν(as)(α-COO(-)) (particularly at low glutamate concentrations), are indicative of inner-sphere coordination of both carboxyl groups and therefore suggest a "lying down" surface species. IR spectra of aspartate reacted with rutile are similar to those of solution-phase samples, without peak shifts indicative of covalent bonding, and outer-sphere coordination is predicted. Quantum chemical calculations were carried out to assist in elucidating molecular mechanisms for glutamate binding to rutile and are in reasonable agreement with experimental data. The combined use of ATR-FTIR data and quantum calculations suggests three potential surface configurations, which include (1) bridging-bidentate where glutamate is "lying down" and binding occurs through inner-sphere coordination of both α- and γ-carboxyl groups; (2) chelating-monodentate in which glutamate binds through inner-sphere coordination with the γ-carboxyl group in a "standing up" configuration (with or without protonation of the α-carboxyl); and (3) another bridging-bidentate configuration where glutamate is binding to rutile via inner-sphere coordination of the α-carboxyl group and outer-sphere coordination with the γ-carboxyl ("lying down").  相似文献   

6.
In this work, two-dimensional surface quasi-crystal patterns were developed by using a novel azobenzene-containing amorphous material (IAC-4), which was newly synthesized for the application. IAC-4 contains a core of isosorbide moiety and two push-pull type azo chromophores as the inner part. The periphery of IAC-4 is functionalized with four cinnamate groups, which can undergo [2+2] photocycloaddition reaction upon UV light irradiation. The molecular design can allow IAC-4 to readily form surface relief structures upon Ar+ laser irradiation, and the formed structures can be further stabilized through a photo-cross-linking reaction induced by UV light irradiation. On the basis of the material, two-dimensional (2D) quasi-crystal structures with different rotation symmetries were successfully fabricated on the IAC-4 films by using the dual-beam multiple exposure technique. In contrast to the approach using photoresist, the quasi-crystal structures were fabricated through the photoinduced mass migration, and no subsequent wet-etch or dry-etch step was required in the process. The quasi-crystal structures with rotation symmetry as high as 60-fold could be feasibly fabricated through this approach. The surface patterns and fabrication method can be potentially applied in areas such as optics, communications, and security inspection.  相似文献   

7.
The synthesis and structures of metal aminocarboxylates prepared in acidic, neutral, or alkaline media have been explored with the purpose of isolating coordination polymers with linear chain and two-dimensional layered structures. Metal glycinates of the formulae [CoCl2(H2O)2(CO2CH2NH3)] (I), [MnCl2(CO2CH2NH3)2] (II), and [Cd3Cl6(CO2CH2NH3)4] (III) with one-dimensional chain structures have been obtained by the reaction of the metal salts with glycine in an acidic medium under hydro/solvothermal conditions. These chain compounds contain glycine in the zwitterionic form. 4-Aminobutyric acid transforms to a cyclic amide under such reaction conditions, and the amide forms a chain compound of the formula [CdBr2(C4H7NO)2] (IV). Glycine in the zwitterionic form also forms a two-dimensional layered compound of the formula [Mn(H2O)2(CO2CH2NH3)2]Br2 (V). 6-Aminocaproic acid under alkaline conditions forms layered compounds with metals at room temperature, the metal being coordinated both by the amino nitrogen and the carboxyl oxygen atoms. Of the two layered compounds [Cd{CO2(CH2)5NH2}2]2 H2O (VI) and [Cu{CO2(CH2)5NH2}2]2 H2O (VII), the latter has voids in which water molecules reside.  相似文献   

8.
Molecular brushes (densely grafted polymers or bottle-brush macromolecules) were synthesized by the "grafting onto" method via combination of atom transfer radical polymerization (ATRP) and "click" reactions. Linear poly(2-hydroxyethyl methacrylate) (PHEMA) polymers were synthesized first by ATRP. After esterification reactions between pentynoic acid and the hydroxyl side groups, polymeric backbones with alkynyl side groups on essentially every monomer unit (PHEMA-alkyne) were obtained. Five kinds of azido-terminated polymeric side chains (SCs) with different chemical compositions and molecular weights were used, including poly(ethylene glycol)-N3 (PEO-N3), polystyrene-N3, poly(n-butyl acrylate)-N3, and poly(n-butyl acrylate)-b-polystyrene-N3. All click coupling reactions between alkyne-containing polymeric backbones (PHEMA-alkyne) and azido-terminated polymeric SCs were completed within 3 h. The grafting density of the obtained molecular brushes was affected by several factors, including the molecular weights and the chemical structures of the linear SCs, as well as the initial molar ratio of linear chains to alkynyl groups. When linear polymers with "thinner" structure and lower molecular weight, e.g., PEO-N3 with Mn = 775 g/mol, were reacted with PHEMA-alkyne (degree of polymerization = 210) at a high molar ratio of linear chains to alkynyl groups in the backbone, the brush copolymers with the highest grafting density were obtained (Y(grafting) = 88%). This result indicates that the average number of SCs was ca. 186 per brush molecule and the average molecular weight of the brush molecules was ca. 190 kg/mol.  相似文献   

9.
Interlayer hydroxyl groups of layered silicate kanemite have been modified with trimethylsilyl groups by the reaction between the hydroxyl groups and trimethylchlorosilane. Expansion of the interlayer space by intercalation of dimethyldialkylammonium ions into the silicate layers enables the silylating reagent to access the hydroxyl groups. An increase in specific surface areas was observed with increasing concentration of trimethylsilyl groups. This result suggests that the interlayer space of kanemite can be used as an effective molecular adsorption space by weakening the interaction between the interlayer hydrogen bonds of hydroxyl groups. The modification of kanemite with trimethylsilyl groups restricted the adsorption of water below a monolayer capacity and was favorable for benzene adsorption.  相似文献   

10.
Husk of Lathyrus sativus (HLS) has been found to be a good sorbent for the removal of nickel(II) from its aqueous solution. The adsorption process depends on pH of the solution with an optimum at 5.0, and follows Langmuir isotherm model (correlation coefficient 0.998). Initial adsorption rate is very fast and reaches equilibrium following pseudo-second order kinetics within 60 min. Amino, carboxyl, hydroxyl and phosphate groups of the biomass are involved in chemical interaction with nickel ions as revealed from SEM-EDX and FTIR studies. Chemical modifications of the functional groups of the biosorbent show that amino groups contribute largely (approximately 57%) for the binding of nickel ions and probably undergo chelation through dative bond formation. HLS biomass has been found to adsorb both nickel and cadmium equally from their mixed solution to the extent of approximately 70% indicating the importance of this sorbent in industrial effluent treatment.  相似文献   

11.
均苯四甲酸与对羟基吡啶超分子聚合物的制备   总被引:1,自引:0,他引:1  
超分子聚合物(supramolecular polymer)是指单体单元间依靠可逆和高度取向的非共价作用力结合的、在溶液或本体中表现出聚合物特性的一类特殊聚合物[1].其中,氢键结合超分子聚合物因氢键的高度取向性及丰富的结合形式而具有特殊结构与性能,已成为近期关注的热点[2~4].文献中报道的氢键结合超分子聚合物主要有多重氢键结合和基于羧基与吡啶基的氢键结合(其键能可达45kJ·mol-1[5])两类,它们均可表现出和传统聚合物诸多类似的性质,诸如高的溶液粘度、形成凝胶、具有弹性等,同时其结构和性能又随温度等环境条件的变化而发生可逆变化,使得这类…  相似文献   

12.
The title 1:1 adduct, has been prepared and a large single crystal with dimensions of 5 mm×50 mm×20 mm was obtained by slow-cooling method. It produces the green radiation at 532 nm under the irradiation of Nd~3+: YAG laser beam at 1064nm. The crystal structure of this potential non-linear optical material was determined by X-ray diffraction method. The crystal is orthorbombic, space group Pca2_1, with a=2.2701(5) nm, b=0.5852(2) nm, c=0.7815(2) nm, Z=4; final R is 0.054 for 702 observed reflections. The intermolecular hydrogen bonds are formed between the amino and carboxyl groups of glycines, which connect the glycine molecules to form two-dimensional network parallel to the (100) plane, while the intermolecular hydrogen bonds between the carboxyl group of glycine and the carboxyl group of m-nitrobenzoic acid let the latter link to above mentioned two-dimensional network.  相似文献   

13.
A variety of fluoroalkyl end-capped oligomers were prepared under mild conditions by the use of fluoroalkanoyl peroxide as a key intermediate. These oligomers can form the self-assembled molecular aggregates with the aggregations of end-capped fluoroalkyl groups in aqueous and organic media. Fluorinated self-assembled molecular aggregates containing carboxyl and sulfo groups were suggested to interact with positively charged HIV-1 to exhibit a potent anti-HIV-1 activity in vitro. In contrast, fluoroalkyl end-capped oligomers containing cationic segments exhibited not only the unique surface active properties imparted by fluorine as well as the usual low-molecular fluorinated surfactants, but also high surface antibacterial activity. Fluoroalkyl end-capped oligomers containing betaine-type segments were found to cause a gelation where the strong aggregation of the end-capped fluoroalkyl groups is involved in establishing the physical gel network in water and polar organic solvents under non-crosslinked conditions. Similarly, fluoroalkyl end-capped oligomers containing hydroxyl groups could cause a gelation, where the aggregation of fluoroalkyl groups and hydrogen-bonding interaction is involved in establishing a physical gel network in water and polar organic solvents under non-crosslinked conditions. Fluoroalkanoyl peroxide is also a convenient tool for the preparation of new fluoroalkyl end-capped oligomers containing recognition moieties such as diacetone segments. These fluorinated oligomers containing recognition moieties could form the self-assembled molecular aggregates to recognize selectively the hydrophilic amino and N,N-dimethylamino compounds as guest molecules.  相似文献   

14.
The crystal and molecular structures of the alpha- and beta-L-Asp isomers of L-aspartyl-L-alanine have been determined at 120 K using 1226 and 1609 reflections (I greater than 2.5 sigma I), respectively. The space group for the alpha-isomer is P2(1), with cell parameters a = 4.788(1), b = 16.943(4), c = 5.807(1) A and beta = 107.55(2) degrees; final R factor 0.042. The space group for the beta-isomer is P2(1)2(1)2(1) with a = 4.845(1), b = 9.409(2) and c = 19.170(3) A; final R-factor 0.047. The two peptides crystallize as zwitterions with the side-chain acidic groups ionized. Each molecule adopts a trans configuration at the peptide bond with both carboxyl groups situated on the same side of the peptide plane. The geometries of the aspartyl moieties do, however, differ in the two structures. The peptide bond is significantly longer in the beta-isomer than in the alpha-isomer, with C-N 1.344(3) and 1.328(4) A, respectively. A very short intermolecular carboxyl...carboxyl hydrogen bond (O...O = 2.502(4) A) is observed in the crystals of the alpha-isomer.  相似文献   

15.
To meet the growing demands for the development of new molecular entities for discovering new drugs and materials, organic chemists have started looking for new concepts to supplement traditional approaches. In one such approach, the expertise gained over the years in the area of organic synthesis and the rational drug-design concepts are combined together to create "nature-like" and yet unnatural organic molecules that are expected to provide leads in discovering new molecules. Emulating the basic principles followed by nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl groups provide an excellent opportunity for organic chemists to create structural diversities akin to nature's molecular arsenal. Recent advances in the area of combinatorial chemistry give unprecedented technological support for rapid compilations of sugar amino acid-based libraries exploiting the diversities of carbohydrate molecules and well-developed solid-phase peptide synthesis methods. This review chronicles the development of sugar amino acids as a novel class of peptidomimetic building blocks and their applications in generating desired secondary structures in peptides as well as in creating mimics of natural biopolymers.  相似文献   

16.
Here, we report that carboxylated poly‐l ‐lysine, a polyampholyte, shows lower critical solution temperature (LCST)‐type temperature‐responsive liquid–liquid phase separation and coacervate formation in aqueous solutions. The phase‐separation temperature of polyampholytes is strongly affected by the polymer concentration, balance between the carboxyl and amino groups, hydrophobicity of the side chain, and NaCl concentration in the solution. We concluded that the phase separation was caused by both electrostatic interactions between the carboxyl and amino groups and intermolecular hydrophobic interactions. The addition of NaCl weakened the electrostatic interactions, causing the two phases to remix. The introduction of the hydrophobic moiety decreased the phase‐separation temperature by making the molecular interactions stronger. Finally, temperature‐responsive hydrogels were prepared from the polyampholytes to explore their applicability as biomaterials and in drug delivery systems. The fine‐tuning of the phase‐separation temperature of poly‐l ‐lysine‐based polyampholytes through molecular design should open new avenues for their use in precisely controlled biomedical applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 876–884  相似文献   

17.
A novel methodology for constructing molecularly ordered silica nanostructures with two-dimensional (2-D) and three-dimensional (3-D) networks has been developed by using a stepwise process involving silylation of a layered silicate octosilicate with alkoxytrichlorosilanes [ROSiCl(3), R = alkyl] and subsequent reaction within the interlayer spaces. Alkoxytrichlorosilanes react almost completely with octosilicate, bridging two closest Si-OH (or -O(-)) sites on the silicate layers, to form new five-membered rings. The unreacted functional groups, Si-Cl and Si-OR, are readily hydrolyzed by the posttreatment with a water/dimethyl sulfoxide (DMSO) or water/acetone mixture, leading to the formation of two types of silicate structures. The treatment with a water/DMSO mixture produced a unique crystalline 2-D silicate framework with geminal silanol groups, whereas a water/acetone mixture induced hydrolysis and subsequent condensation between adjacent layers to form a new 3-D silicate framework. The 2-D structure is retained by the presence of DMSO molecules within the swelled interlayer spaces and is transformed to a 3-D silicate upon desorption of DMSO. The structural modeling suggests that both of the 3-D silicates contain new cagelike frameworks where solvent molecules are trapped even at high temperature (up to 380 degrees C, in the case of acetone). Both 2-D and 3-D silica structures are quite different from known layered silicates and zeolite-like materials, indicating the potential of the present approach for precise design of various silicate structures at the molecular level.  相似文献   

18.
氢键酸度的量子化学参数表示   总被引:3,自引:0,他引:3  
研究了137个化合物的总氢键酸度(∑A2H)与量子化学参数的相关性.对于含羟基或羧基化合物,∑A2H=-0.0277+3.826QH-0.0273ELUMO-0.0654EHOMO+3.085QO(n=70,r=0.982),其中QH表示羟基或羧基氢原子净电荷,ELUMO表示最低未占据分子轨道能级,EHOMO表示最高占据分子轨道能级,QO表示羟基或羧基中与氢原子连接的氧原子净电荷;对于含氨基化合物,∑A2H=-1.569+3.637QH-0.1235EHOMO(n=49,r=0.985),其中QH表示氨基中较正氢原子的净电荷;对于含亚氨基化合物,∑A2H=-0.472+3.676QH(n=18,r=0.993),其中QH表示亚氨基氢原子的净电荷.  相似文献   

19.
化学自组装法制备钡铁氧体亚微空心球   总被引:8,自引:0,他引:8  
描述了一种基于化学自组装制备钡铁氧体亚微空心球的新颖方法, 即以聚(苯乙烯-共-丙烯酸)乳胶粒子为模板, 利用酸醇相互作用, 将在聚乙二醇水溶液中得到的钡铁氧体前驱物包覆在模板粒子上, 形成聚(苯乙烯-共-丙烯酸)/钡铁氧体前驱物核壳纳米复合粒子. 复合粒子经历750 ℃的热处理, 可获得主晶相为BaFe12O19的钡铁氧体亚微空心球. 该空心球有可能在微波吸收、电磁流变等领域得到重要应用.  相似文献   

20.
LI Wu  MA Yuan  ZHAO Yu-Fen 《中国化学》2005,23(9):1264-1266
In this paper, based on known crystal structures of square pyramid (SP) and trigonal bipyramid (TBP) penta coordinated phosphorus compounds containing amino acid side chains, such as amino, carboxyl, hydroxyl or thiol, a software for survey the P(5)-structure of phosphorylated proteins was derived. By this software, it was found that 382 of 398 phosphorus related kinases (96%) from current PDB could go through the penta-coordinated phosphorus transition state or intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号