共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
简要阐述了分子器件和分子机器的相关概念,按照调控方式分类综述了基于24冠8的准轮烷、轮烷和索烃大环化合物构筑的分子器件和分子机器等在超分子领域的研究进展并对研究前景作了展望. 相似文献
3.
4.
5.
6.
A. Yu. Tsivadze G. V. Ionova V. K. Mikhalko 《Russian Journal of Inorganic Chemistry》2008,53(2):229-241
The theoretical aspects of the mechanism of the motion of cations and ligands in molecular machines referred to as redox switches are presented. The interrelated properties of cations—the energetic, electrochemical, spectral, and magnetic properties; their propensity to form either covalent or ionic bonds; and the relative softness and hardness of cations and ligands—stimulate molecular motion. These properties determine the thermal stability and stability to destruction caused by electrochemical processes and, eventually, the maximal number of transformation cycles. The maximal efficiency of redox switches is attained when the redox reaction involves a cation with a half-filled (d 5, f 7) or complete (d 10, f 14) electronic shell. The role of the Jahn-Teller effect is considered: it is responsible for geometry distortion, which stimulates cation motion. The properties of nd and 4f cations are compared from the standpoint of their use for designing redox switches. In switches constructed on the basis of supramolecular compounds containing hard and soft moieties, softer cations (Fe2+, Co2+, Cu+, etc.) prefer to coordinate to soft ligands and harder cations (Fe3+, Co3+, Cu2+, etc.) prefer to coordinate to hard ligands. A cation moves due to the soft-hard change of its coordination sphere in the course of the redox reaction. Design of redox switches based on solid compounds with a cation in mixed oxidation state is shown to be promising. Cations can change their oxidation state with a change in temperature or pressure. The possibility of designing “magnetic switches” is considered. 相似文献
7.
In the past ten years a great variety of artificial molecular machines have been constructed, and very interesting concepts for controlling molecular‐level movements by external inputs have been developed. Most of the studies, however, have been performed in solution, where the investigated systems contain a huge number of molecules which behave independently from one another because they cannot be addressed individually. Before such systems can find applications in many fields of technology, they must be interfaced with the macroscopic world by ordering them in some way so that they can behave coherently and can be addressed in space. The problem of obtaining ordered arrays of molecular machines can be addressed by a variety of techniques, which include deposition on surfaces, incorporation into polymers, organization at interfaces, and immobilization in membranes or porous materials. In the last few years, the development of scanning‐probe techniques has also enabled direct observation and manipulation of single molecular‐machine molecules on surfaces. Techniques of this kind have opened novel routes to the study of molecular machines, and have also contributed to better understanding the differences between movement at the macroscopic and molecular levels. This paper reviews some recent achievements in the field of molecular machines working on surfaces and at interfaces, as single molecules or ordered arrays. Hybrid natural–artificial machines are also discussed, and the working mechanism of some natural machines is illustrated for the purpose of comparison. 相似文献
8.
具有分子机器、分子开关功能的自组装超分子体系 总被引:6,自引:0,他引:6
本文介绍了具有分子梭或分子开关性质的新型轮烷和索烃超分子以及具有分子机器功能的其它类型化学和生物分子的国际研究最新动态。 相似文献
9.
Chiara Biagini Stefano Di Stefano 《Angewandte Chemie (International ed. in English)》2020,59(22):8344-8354
Natural molecular machines require a continuous fuel supply to perform motions and/or remain in a functional state. Consequently, the aim of developing artificial devices and materials with life‐type properties has motivated a growing interest in abiotic chemical fuels and in their supply modalities. Many artificial molecular machines have been developed in which the sequential addition of several chemical reagents allows the machine to perform complete cycles of motion. Only recently, examples of molecular machines whose cycles of motion are triggered by a single pulse of fuel have been reported. The latter systems are the object of this Minireview where the abiotic chemical fuels used so far to trigger the complete cycles of motion of molecular machines are described, with particular emphasis on the operation mechanism of the machine/fuel systems. 相似文献
10.
Moritz Mickler Enrico Schleiff Prof. Dr. Thorsten Hugel Prof. Dr. 《Chemphyschem》2008,9(11):1503-1509
Novel single‐molecule techniques allow the observation of single‐molecular motors in real time under physiological conditions. This enables one to gain previously inaccessible information about the mechanics of molecular motors, especially their mechano‐chemical coupling. As an example, we discuss the DNA import motor of the bacteriophage ?29 and protein import into chloroplasts. In contrast to these highly developed biological molecular motors, artificial molecular motors are still at an early stage of development. Nevertheless, they already give a wealth of information. Our review focuses on how the investigation of artificial and biological molecular motors can mutually enrich each other. 相似文献
11.
12.
Many biomolecules exist as internal ion pairs or zwitterions within a biologically relevant pH range. Despite their importance, the molecular recognition of this type of systems is specially challenging due to their strong solvation in aqueous media, and their trend to form folded or self‐assembled structures by pairing of charges of different sign. In this Minireview, we will discuss the molecular recognition of zwitterions using non‐natural, synthetic receptors. This contribution does not intend to make a full in‐depth revision of the existing research in the field, but a personal overview with selected representative examples from the recent literature. 相似文献
13.
Frédéric Coutrot 《ChemistryOpen》2015,4(5):556-576
The control of motion of one element with respect to others in an interlocked architecture allows for different co-conformational states of a molecule. This can result in variations of physical or chemical properties. The increase of knowledge in the field of molecular interactions led to the design, the synthesis, and the study of various systems of molecular machinery in a wide range of interlocked architectures. In this field, the discovery of new molecular stations for macrocycles is an attractive way to conceive original molecular machines. In the very recent past, the triazolium moiety proved to interact with crown ethers in interlocked molecules, so that it could be used as an ideal molecular station. It also served as a molecular barrier in order to lock interlaced structures or to compartmentalize interlocked molecular machines. This review describes the recently reported examples of pH-sensitive triazolium-containing molecular machines and their peculiar features. 相似文献
14.
In 2016, the Nobel Prize in Chemistry was awarded for pioneering work on molecular machines. Half a year later, in Toulouse, the first molecular car race, a “nanocar race”, was held by using the tip of a scanning tunneling microscope as an electrical remote control. In this Focus Review, we discuss the current state‐of‐the‐art in research on molecular machines at interfaces. In the first section, we briefly explain the science behind the nanocar race, followed by a selection of recent examples of controlling molecules on surfaces. Finally, motion synchronization and the functions of molecular machines at liquid interfaces are discussed. This new concept of molecular tuning at interfaces is also introduced as a method for the continuous modification and optimization of molecular structure for target functions. 相似文献
15.
Abraham Colin-Molina Marcus J. Jellen Dr. Joelis Rodríguez-Hernández Dr. Miguel Eduardo Cifuentes-Quintal Jorge Barroso Dr. Rubén A. Toscano Prof. Gabriel Merino Prof. Braulio Rodríguez-Molina 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(51):11727-11733
Two new crystalline rotors 1 and 2 assembled through N−H⋅⋅⋅N hydrogen bonds by using halogenated carbazole as stators and 1,4-diaza[2.2.2]bicyclooctane (DABCO) as the rotator, are described. The dynamic characterization through 1H T1 relaxometry experiments indicate very low rotational activation barriers (Ea) of 0.67 kcal mol−1 for 1 and 0.26 kcal mol−1 for 2 , indicating that DABCO can reach a THz frequency at room temperature in the latter. These Ea values are supported by solid-state density functional theory computations. Interestingly, both supramolecular rotors show a phase transition between 298 and 250 K, revealed by differential scanning calorimetry and single-crystal X-ray diffraction. The subtle changes in the crystalline environment of these rotors that can alter the motion of an almost barrierless DABCO are discussed here. 相似文献
16.
The molecular switches and machines arena has entered a new phase in which molecular machines operate under out‐of‐equilibrium conditions using appropriate fuel. Unlike the equilibrium version, the dissipative off‐equilibrium machines necessitate only one stimulus input to complete each cycle and decrease chemical waste. Such a modus operandi would set significant steps towards mimicking the natural machines and may offer a platform for advancing new applications by providing temporal control. This review summarises the recent progress and blueprint of autonomous fuel‐driven off‐equilibrium molecular switches and machines. 相似文献
17.
Herbert Plenio Clemens Aberle 《Angewandte Chemie (International ed. in English)》1998,37(10):1397-1399
The availability of sodium ions can be regulated indirectly (through electron transfer reactions) and reversibly through the addition and removal of zinc ions. In this cyclic process (depicted on the right) a redox-responsive ferrocene substituted with two dipicolylamino ligands (Fcdpa) coordinates two Zn2+ ions, while a redox-switchable ferrocene cryptand (Fccrypt) only forms stable complexes with Na+ when the ligand is in its reduced form. L is a strong ligand such as 1,4,8,11-tetraazacyclotetradecane. 相似文献
18.
Thitiporn Sangchai Dr. Shaymaa Al Shehimy Dr. Emanuele Penocchio Dr. Giulio Ragazzon 《Angewandte Chemie (International ed. in English)》2023,62(47):e202309501
Non-equilibrium chemical systems underpin multiple domains of contemporary interest, including supramolecular chemistry, molecular machines, systems chemistry, prebiotic chemistry, and energy transduction. Experimental chemists are now pioneering the realization of artificial systems that can harvest energy away from equilibrium. In this tutorial Review, we provide an overview of artificial molecular ratchets: the chemical mechanisms enabling energy absorption from the environment. By focusing on the mechanism type—rather than the application domain or energy source—we offer a unifying picture of seemingly disparate phenomena, which we hope will foster progress in this fascinating domain of science. 相似文献
19.
20.
2016年诺贝尔化学奖颁给了Jean-Pierre Sauvage、Fraser Stoddart和Ben Feringa,以表彰他们在设计与合成分子机器领域的卓越贡献.分子机器是模拟自然界的生物大分子机器或宏观机器的分子,科学家通过精巧的设计,利用有机合成反应构建这些内部能相对运动的分子,实现从分子层面的精确控制.本次诺贝尔化学奖颁给了尚无实际应用的分子机器,给未来带来了无限可能. 相似文献