首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄良敏  丁志华  洪威  王川 《物理学报》2012,61(2):23401-023401
提出了基于互相关的多普勒OCT(correlated Doppler optical coherence tomography, CD-OCT)方法, 能够有效的抑制噪声, 实现低信噪比条件下的流速探测. 对CD-OCT算法进行了详细的推导, 分析了噪声的相关性对该算法结果的影响, 最后基于谱域和时域联合探测方法(joint spectral and time domain optical coherence tomography, STD-OCT)以及CD-OCT算法的对比实验证明了该算法能够进一步实现信噪比的提高, 使测量的结果更为稳定.  相似文献   

2.
Self-referenced Doppler optical coherence tomography   总被引:1,自引:0,他引:1  
Yazdanfar S  Izatt JA 《Optics letters》2002,27(23):2085-2087
Doppler optical coherence tomography (DOCT) allows simultaneous micrometer-scale resolution cross-sectional imaging of tissue structure and blood flow. We demonstrate a fiber-optic polarization-diversity-based differential phase contrast DOCT system as a method to perform self-referenced velocimetry in highly scattering media. Using this strategy, we reduced common-mode interferometer noise to <1 Hz and improved Doppler estimates in a scattering flow phantom by a factor of 5.  相似文献   

3.
Higher-order cross-correlation-based Doppler optical coherence tomography   总被引:1,自引:0,他引:1  
Huang L  Ding Z  Hong W  Wang C  Wu T 《Optics letters》2011,36(22):4314-4316
A method based on higher-order cross-correlation is proposed to fetch the Doppler information on flow velocity within areas under low signal-to-noise ratio (SNR) by spectral domain optical coherence tomography. The proposed method is theoretically developed and validated by measurement of a moving mirror with known velocities. Standard deviations of flow velocities of the mirror under different SNRs are determined by the proposed method and compared with those by the modified phase-resolved method. Measurement of flowing particles within a glass capillary is also conducted, and Doppler flow velocity maps of the glass capillary are reconstructed by both methods. All experimental results demonstrate that the proposed method can significantly suppress noise, thus rendering it suitable for flow measurement under low SNR cases.  相似文献   

4.
The study of flow dynamics in complex geometry vessels is highly important in various biomedical applications where the knowledge of the mechanic interactions between the moving fluid and the housing media plays a key role for the determination of the parameters of interest, including the effect of blood flow on the possible rupture of atherosclerotic plaques. Doppler Optical Coherence Tomography (DOCT), as a functional extension of Optical Coherence Tomography (OCT), is an optic, non-contact, noninvasive technique able to achieve detailed analysis of the flow/vessel interactions. It allows simultaneous high resolution imaging (∼10 μm typical) of the morphology and composition of the vessel and determination of the flow velocity distribution along the measured cross-section. We applied DOCT system to image high-resolution one-dimensional and multi-dimensional velocity distribution profiles of Newtonian and non-Newtonian fluids flowing in vessels with complex geometry, including Y-shaped and T-shaped vessels, vessels with aneurism, bifurcated vessels with deployed stent and scaffolds. The phantoms were built to mimic typical shapes of human blood vessels, enabling preliminary analysis of the interaction between flow dynamics and the (complex) geometry of the vessels and also to map the related velocity profiles at several inlet volume flow rates. Feasibility studies for quantitative observation of the turbulence of flows arising within the complex geometry vessels are discussed. In addition, DOCT technique was also applied for monitoring cerebral mouse blood flow in vivo. Two-dimensional DOCT images of complex flow velocity profiles in blood vessel phantoms and in vivo sub-cranial mouse blood flow velocities distributions are presented.  相似文献   

5.
We propose and demonstrate a novel detection technique, based on a modified electronic phase-locked loop, for Doppler optical coherence tomography. The technique permits real-time simultaneous reflectivity and continuous, bidirectional velocity mapping in turbid media over a wide velocity range with minimal sensitivity penalty compared with conventional optical coherence tomography, which is a major advance over current postprocessing and discrete parallel detection techniques.  相似文献   

6.
We present a fiber-based, low-coherence interferometer that significantly reduces phase noise by incorporating a second, narrowband, continuous-wave light source as a phase reference. By incorporating this interferometer into a Doppler OCT system, we demonstrate significant velocity noise reduction in reflective and scattering samples using processing techniques amenable to real-time implementation. We also demonstrate 90% suppression of velocity noise in a flow phantom.  相似文献   

7.
Color Doppler optical coherence tomography (CDOCT) is a noninvasive optical imaging technique for micrometer-scale physiological flow mapping simultaneously with morphological optical coherence tomography imaging. We have developed a novel CDOCT signal-processing strategy capable of imaging physiological flow rates at 8 frames/s. Our new strategy features hardware-implemented digital autocorrelation across subsequent scans, permitting us to measure 300-Hz-8-kHz Doppler shifts upon signals of 0.6-MHz bandwidth. The performance of the CDOCT system was demonstrated in a flow phantom and in vivo in Xenopus laevis.  相似文献   

8.
9.
Color Doppler optical coherence tomography (CDOCT) is a recent innovation that allows spatially localized flow-velocity mapping simultaneously with microstructural imaging. We present a theoretical model for velocity-image formation in CDOCT. The proportionality between the heterodyne detector current Doppler power spectrum in CDOCT and the optical source power spectrum is established. We show that stochastic modifications of the Doppler spectrum by fluctuating scatterer distributions in the flow field give rise to unavoidable velocity-estimation inaccuracies as well as to a fundamental trade-off between image-acquisition rate and velocity precision. Novel algorithms that permit high-fidelity depth-resolved measurements of velocities in turbid media are also reported.  相似文献   

10.
Second-harmonic optical coherence tomography   总被引:6,自引:0,他引:6  
Jiang Y  Tomov I  Wang Y  Chen Z 《Optics letters》2004,29(10):1090-1092
Second-harmonic optical coherence tomography, which uses coherence gating of second-order nonlinear optical responses of biological tissues for imaging, is described and demonstrated. Femtosecond laser pulses were used to excite second-harmonic waves from collagen harvested from rat tail tendon and a reference non-linear crystal. Second-harmonic interference fringe signals were detected and used for image construction. Because of the strong dependence of second-harmonic generation on molecular and tissue structures, this technique imparts contrast and resolution enhancement to conventional optical coherence tomography.  相似文献   

11.
Xie T  Mukai D  Guo S  Brenner M  Chen Z 《Optics letters》2005,30(14):1803-1805
A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.  相似文献   

12.
Spectroscopic optical coherence tomography   总被引:12,自引:0,他引:12  
Spectroscopic optical coherence tomography (OCT), an extension of conventional OCT, is demonstrated for performing cross-sectional tomographic and spectroscopic imaging. Information on the spectral content of backscattered light is obtained by detection and processing of the interferometric OCT signal. This method allows the spectrum of backscattered light to be measured over the entire available optical bandwidth simultaneously in a single measurement. Specific spectral features can be extracted by use of digital signal processing without changing the measurement apparatus. An ultrabroadband femtosecond Ti:Al(2)O(3) laser was used to achieve spectroscopic imaging over the wavelength range from 650 to 1000 nm in a simple model as well as in vivo in the Xenopus laevis (African frog) tadpole. Multidimensional spectroscopic data are displayed by use of a novel hue-saturation false-color mapping.  相似文献   

13.
Scanning optical coherence tomography (OCT) is limited in sensitivity and resolution by the restricted focal depth of the confocal detection scheme. Holoscopy, a combination of holography and Fourier-domain full-field OCT, is proposed as a way to detect photons from all depths of a sample volume simultaneously with uniform sensitivity and lateral resolution, even at high NAs. By using the scalar diffraction theory, as frequently applied in digital holographic imaging, we fully reconstruct the object field with depth-invariant imaging quality. In vivo imaging of human skin is demonstrated with an image quality comparable to conventionally scanned OCT.  相似文献   

14.
An experimental tracking optical coherence tomography (OCT) system has been clinically tested. The prototype instrument uses a secondary sensing beam and steering mirrors to compensate for eye motion with a closed-loop bandwidth of 1 kHz and tracking accuracy, to within less than the OCT beam diameter. The retinal tracker improved image registration accuracy to <1 transverse pixel (<60 microm). Composite OCT images averaged over multiple scans and visits show a sharp fine structure limited only by transverse pixel size. As the resolution of clinical OCT systems improves, the capability to reproducibly map complex structures in the living eye at high resolution will lead to improved understanding of disease processes and improved sensitivity and specificity of diagnostic procedures.  相似文献   

15.
We present the results of studies of the basic principles and describe the design of a low-coherence two-wavelength interferometer based on polarization-maintaining fiber. The interferometer was developed for optical coherence tomography (OCT) imaging of the internal structure of living biological tissue simultaneously at two wavelengths, 830 and 1300 nm. Images of several sites of living biological tissue are presented and analyzed.  相似文献   

16.
Ahn YC  Jung W  Chen Z 《Optics letters》2007,32(11):1587-1589
Multiangle, fiber-based, spectral-domain Doppler optical coherence tomography with a phase-resolved algorithm is presented to measure three components of an arbitrary velocity vector. A beam divider that divides a probe beam to have five independent viewpoints and path length delays was designed. The divider was inserted into the sampling arm of a Doppler optical coherence tomography system between the collimator and the first galvo mirror of a two-axis galvo scanner. The divider produced five independent D k's (the average difference between the wave vectors of incoming and outgoing beams) after passing through the focusing lens while keeping two-axis scanning capability. After calibration, an unknown velocity vector field inside a microtube was quantified by solving a three-dimensional minimization problem.  相似文献   

17.
Li X  Ko TH  Fujimoto JG 《Optics letters》2001,26(23):1906-1908
We describe a miniature fiber-optic Doppler imaging catheter for integrated functional and structural optical coherence tomography (OCT) imaging. The Doppler catheter can map blood flow within a vessel as well as image vessel wall structures. A prototype Doppler catheter has been developed and demonstrated for measuring the intraluminal velocity profile in a vessel phantom (conduit). A simple mathematical model is demonstrated to estimate the total flow rate. This estimation technique also enables the spatial range of flow measurements to be extended by approximately two times the normal OCT image-penetration depth. The Doppler OCT catheter could be a powerful device for cardiovascular imaging.  相似文献   

18.
Color Doppler optical coherence tomography (CDOCT) is capable of precise velocity mapping in turbid media. Previous CDOCT systems based on the short-time Fourier transform have been limited to maximum flow velocities of the order of tens of millimeters per second. We describe a technique, based on interference signal demodulation at multiple frequencies, to extend the physiological relevance of CDOCT by increasing the dynamic range of measurable velocities to hundreds of millimeters per second. The physiologically important parameter of shear rate is also derived from CDOCT measurements. The measured flow-velocity profiles and shear-rate distributions correlate very well with theoretical predictions. The multiple demodulation technique, therefore, may be useful to monitor blood flow in vivo and to identify regions with high and low shear rates.  相似文献   

19.
We propose an approach for absolute velocity measurement where the use of a beam displacer provides two orthogonal linearly polarized beams to probe the sample simultaneously at two different incidence angles. The approach helps remove the cross talk image and facilitates single detector-based Fourier domain Doppler velocity measurement. The system has been characterized by quantifying absolute flow velocity in a flow phantom.  相似文献   

20.
Ren H  Du C  Pan Y 《Optics letters》2012,37(8):1388-1390
Speckle contrast based optical coherence angiography (OCA) and optical coherence Doppler tomography (ODT) have been applied to image cerebral blood flow previously. However, the contrast mechanisms of these two methods are not fully studied. Here, we present both flow phantom and in vivo animal experiments using ultrahigh-resolution OCA (μOCA) and ODT (μODT) to investigate the flow sensitivity differences between these two methods. Our results show that the high sensitivity of μOCA for visualizing minute vasculature (e.g., slow capillary beds) is due to the enhancement by random Brownian motion of scatterers (e.g., red and white blood cells) within the vessels; whereas, μODT permits detection of directional flow below the Brownian motion regime (e.g., laser-induced microischemia) and is, therefore, more suitable for brain functional imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号