首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 359 毫秒
1.
首先利用硬模板法制备出介孔碳/石墨烯复合材料,然后向复合材料中引入具有赝电容活性的醌类分子进一步增大材料的电容性能。研究结果表明,负载30%(w/w)叔丁基氢醌的介孔碳/石墨烯复合材料具有最佳的电容性能,在电流密度为0.5 A·g-1时,比电容值为355 F·g-1;当电流密度高达30 A·g-1时,其比电容值高达226 F·g-1,比电容保持率为64%,表现出良好的速率特性。  相似文献   

2.
通过液相共沉淀法获得Zn和Co的前驱,经过600℃煅烧处理获得ZnCo2O4纳米颗粒组装的毛线团状的微球。电化学测试表明,在0.5 A·g-1的电流密度下循环200次可逆比容量保持为965 mAh·g-1;在0.8 A·g-1的电流密度下循环350次可逆比容量保持为882 mAh·g-1。倍率性能测试表明在2 A·g-1的电流密度时可逆比容量为736 mAh·g-1。  相似文献   

3.
王瑛  林宁 《无机化学学报》2016,32(12):2191-2197
通过液相共沉淀法获得Zn和Co的前驱,经过600℃煅烧处理获得ZnCo2O4纳米颗粒组装的毛线团状的微球。电化学测试表明,在0.5 A·g-1的电流密度下循环200次可逆比容量保持为965 mAh·g-1;在0.8 A·g-1的电流密度下循环350次可逆比容量保持为882 mAh·g-1。倍率性能测试表明在2 A·g-1的电流密度时可逆比容量为736 mAh·g-1。  相似文献   

4.
采用电化学沉积在碳纳米管纤维上复合锌钴氢氧化物纳米片(CNTF@ZnCo-OH),并研究其电化学性能。实验结果表明CNTF@ZnCo-OH电极在2 A·g-1的电流密度下比电容为748 F·g-1,在10 A·g-1的电流密度下循环2 000圈以后,比电容保持率高达110.4%。该优异循环性能得益于碳纳米管纤维基底的网络结构和ZnCo-OH的纳米片状结构。以CNTF@RGO(石墨烯)为负极、CNTF@ZnCo-OH为正极,组装线状全固态非对称CNTF@ZnCo-OH//CNTF@RGO超级电容器。该器件在0.5 A·g-1电流密度下比电容为70 F·g-1,2 000次循环后电容保持率为79.6%,并且在不同的弯曲状态下保持电化学性能不变,具有优良的机械稳定性。该非对称线状器件可以在0.8~1.4 V之间工作,其能量密度高达19.1 Wh·kg-1,对应的功率密度为1 400.3 W·kg-1。2个30 mm长的线状器件可持续点亮LED灯10 s。  相似文献   

5.
采用碳布(CC)为柔性基底,通过水热法制备了MnO2/CC及N掺杂MnO2/CC无黏结剂负极材料,借助X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、比表面积测试和恒电流充放电对材料进行了结构表征及电化学性能测试。结果表明N掺杂MnO2/CC具有良好的倍率性能和循环稳定性。在0.1 A·g-1的电流密度下,其首次充电比容量为948.8 mAh·g-1,经过不同倍率测试后电流密度恢复至0.1 A·g-1时仍然保持有907.9 mAh·g-1的可逆比容量,容量保持率为95.7%。在1 A·g-1的大电流密度下,其首次充电比容量为640.3 mAh·g-1,循环100次后仍然保持有529.9 mAh·g-1的可逆比容量,容量保持率为82.8%,可逆比容量远高于商用MnO2。  相似文献   

6.
通过两步法制备了一种空心六边形镍钴硫化物(HHNCS)与还原氧化石墨烯(RGO)的纳米复合材料HHNCS/RGO。利用XRD,SEM,TEM和Raman光谱等对复合物进行表征,发现镍钴硫化物为空心六边形结构,并且均匀地附着在RGO的表面。该纳米复合物用作超级电容器电极表现出优异的电化学性能。在电流密度为1 A·g-1时比电容为927 F·g-1;当电流密度增大到20 A·g-1时,比电容仍高达724 F·g-1,表明材料拥有较好的倍率性能。此外,在电流密度5 A·g-1下循环2000次后比电容保留有初始值的93%,显示出优异的循环稳定性。HHNCS/RGO优异的电容性能主要是由于RGO的存在不仅增强了材料的导电性,而且作为理想的载体分散HHNCS纳米片。HHNCS/RGO纳米复合物优异的电化学性能使其在超级电容器电极材料领域具有应用前景。  相似文献   

7.
以具有多级孔结构、高比表面积、良好导电性等特征的碳纳米笼(CNCs)为前体,采用硝酸氧化法在CNCs表面引入含氧官能团。以CNCs为超级电容器电极材料,在相同电流密度下,官能团化样品的比电容显著高于纯CNCs;在1A·g-1下比电容最高可达到255F·g-1,比纯CNCs的188F·g-1增加了34%,这表明表面含氧官能团化能够显著提高CNCs的超级电容器比电容。在100A·g-1的大电流密度下,硝酸氧化后CNCs的比电容保持在111~167F·g-1,表明具有良好的耐大电流充放电性能。在10A·g-1的电流密度下循环10000圈后,CNC-6M样品的比电容由196F·g-1下降到176F·g-1,样品的比电容仍保留90%,具有良好的循环稳定性。表面含氧官能团化CNCs所表现出的这种优异的超级电容器性能归因于CNCs的多尺度分级孔结构、高比表面积、良好的导电性、表面亲水性含氧官能团化带来的浸润性提高和引入的赝电容。  相似文献   

8.
为探索一种高性能的锂离子电池负极材料,采用酸刻蚀法制备了高导电性、高稳定性的二维层状Ti3C2Tx,通过溶剂热法制备了具有高理论比容量的花瓣状VS2纳米片,再经过简单的液相混合得到了二维层状Ti3C2Tx-MXene@VS2复合物。通过扫描电子显微镜、透射电子显微镜、X射线光电子能谱、X射线衍射和能谱分析对复合材料的形貌和结构进行了表征,采用循环伏安、恒流充放电、长循环和交流阻抗谱对复合材料的电化学性能进行了研究。结果表明:VS2纳米片均匀地分布在Ti3C2Tx的层间及表面,该复合物具有高的可逆容量(电流密度为0.1A·g-1时,比容量为610.5mAh·g-1)、良好的倍率性能(电流密度为2A·g-1时,比容量为197.1mAh·g-1)和良好的循环稳定性(电流密度为0.2 A·g-1时,循环600圈后比容量为874.9 mAh·g-1;电流密度为2 A·g-1时,循环1 500圈后比容量为115.9mAh·g-1)。  相似文献   

9.
采用化学沉淀法,在导电基底上原位生长多孔状氧化镍.采用X射线衍射(XRD)、扫描电镜(SEM)和透射电子显微镜(TEM)对其结构和形貌进行了表征.采用循环伏安、恒流充放电技术和交流阻抗对其电化学性能进行了测试.结果表明,由于泡沫镍导电基底增强了电极的导电性,充分利用各组成单元的多孔特性,在电流密度为0.5 A·g-1时,电极的比容量达到3.5 F·cm-2 (705 F·g-1),同时电极具有较好的倍率特性(电容保持率68.1%)和稳定的长循环寿命(3 000次循环后电极比容量增加17.6%).  相似文献   

10.
采用化学沉淀法, 在导电基底上原位生长多孔状氧化镍。采用X射线衍射(XRD)、扫描电镜(SEM)和透射电子显微镜(TEM)对其结构和形貌进行了表征。采用循环伏安、恒流充放电技术和交流阻抗对其电化学性能进行了测试。结果表明, 由于泡沫镍导电基底增强了电极的导电性, 充分利用各组成单元的多孔特性, 在电流密度为0.5 A·g-1时, 电极的比容量达到3.5 F·cm-2 (705 F·g-1), 同时电极具有较好的倍率特性(电容保持率68.1%)和稳定的长循环寿命(3 000次循环后电极比容量增加17.6%)。  相似文献   

11.
通过采用简易温和的水热条件制备导电聚合物@镍铝层状双金属氢氧化物复合材料(CP@NiAl-LDH),构建电子/离子的高速传输纳米通道,利用SEM和XRD对复合材料结构形貌进行表征。电化学性能测试结果表明,导电聚合物为复合材料提供一定的赝电容,促进电荷的快速转移,使CP@NiAl-LDH的电容性能得以显著提升。PPy@LDH具有最好的电容性能,在1 A·g~(-1)的电流密度下,其比容量高达3 010.3 F·g~(-1),当电流密度升高到20 A·g~(-1)时,其比电容保持率为73.1%,表现出优异的倍率性能;同时,在10 A·g~(-1)的电流密度下10 000次充放电循环后仍具有88.8%的比容量保持率,具有优异的循环稳定性。这主要归功于NiAl-LDH与导电聚合物之间的协同增强效应。  相似文献   

12.
以具有多级孔结构、高比表面积、良好导电性等特征的碳纳米笼(CNCs)为前体,采用硝酸氧化法在CNCs表面引入含氧官能团。以CNCs为超级电容器电极材料,在相同电流密度下,官能团化样品的比电容显著高于纯CNCs;在1 A·g-1下比电容最高可达到255 F·g-1,比纯CNCs的188 F·g-1增加了34%,这表明表面含氧官能团化能够显著提高CNCs的超级电容器比电容。在100 A·g-1的大电流密度下,硝酸氧化后CNCs的比电容保持在111~167 F·g-1,表明具有良好的耐大电流充放电性能。在10 A·g-1的电流密度下循环10 000圈后,CNC-6M样品的比电容由196 F·g-1下降到176 F·g-1,样品的比电容仍保留90%,具有良好的循环稳定性。表面含氧官能团化CNCs所表现出的这种优异的超级电容器性能归因于CNCs的多尺度分级孔结构、高比表面积、良好的导电性、表面亲水性含氧官能团化带来的浸润性提高和引入的赝电容。  相似文献   

13.
利用2,3,6,7,10,11-六氨基三苯六盐酸盐(HATP)和4,6-二羟基-5-甲基间苯二甲醛(DMDB)为构筑基元,构筑了二维Ni-Salphen基共价有机骨架(COFs)电极材料(Ni-Salphen-COF)。通过一系列方法对Ni-Salphen-COF的结构、形貌和电化学性能进行了表征和测试。三电极系统测试结果表明,Ni-Salphen-COF具有优异的电化学性能,在1 A·g-1时,比电容达到531 F·g-1,并显示良好的循环稳定性(10 000次循环后电容保持率为89%)。同时,二电极系统测试结果显示,在1 A·g-1时,Ni-Salphen-COF//AC (AC为活性炭)比电容达176 F·g-1;在功率密度为900 W·kg-1时,最大能量密度为55 Wh·kg-1。良好的性能可能归因于Ni-Salphen结构提高了电极材料的电导率、氧化还原活性和电荷转移能力。  相似文献   

14.
通过简单的溶剂热反应合成了一种钴基层状MOF([Co(4,4''-bpy)(tfbdc)(H2O)2],Co-BTH,4,4''-bpy=4,4''-联吡啶,H2tfbdc=四氟对苯二甲酸),并考察了其作为超级电容器电极材料的性能。研究结果表明:Co-BTH电极具有良好的赝电容性能,包含高比电容和较好的倍率性能。在1 A·g-1电流密度下和1 mol·L-1 KOH溶液中,其比电容最大可达2 316 F·g-1。在2 A·g-1的电流密度下,循环1 000次后,电极的比电容仍然还有847 F·g-1。良好的赝电容性能与Co-BTH的层状结构和小尺寸的纳米片有关。  相似文献   

15.
以蔗糖为碳源,尿素为氮源,草酸钾为活化剂,通过简单的研磨和高温碳化制备了具有超高比表面积(大于3 000 m2·g-1)的氮掺杂多孔碳材料。采用多种手段对多孔碳材料的微观形貌、比表面积、孔结构和表面氮物种进行了表征,探究了不同温度下草酸钾和尿素对碳材料的比表面积、氮含量和超级电容性能的影响。结果表明,仅使用草酸钾作为活化剂制备的碳材料KC-800 的比表面积为 1 114 m2·g-1,而同时使用草酸钾和尿素制备的样品 KNC-800 的比表面积高达 3 033 m2·g-1。在以 6.0mol·L-1 KOH 为电解液的三电极体系中,当电流密度为 0.5 A·g-1时,KNC-800 的比电容为 405 F·g-1,而 KC-800 的比电容仅为248 F·g-1。这表明草酸钾和尿素的加入显著提高了多孔碳材料的比表面积和超级电容性能。电容贡献分析表明,KNC-800的双电层电容值和赝电容值均高于KC-800。KNC-800在电流密度为0.5 A·g-1时经过10 000次循环后仍能保持98.3%的初始比电容,表现出优异的循环性能。  相似文献   

16.
周琦  李志洋  郑斌 《无机化学学报》2018,34(6):1103-1109
采用快速凝固与脱合金化相结合的方法制备纳米多孔Ni、Ni-Co合金,分别经腐蚀与退火获得纳米多孔NiO、NiCo_2O_4,采用XRD、SEM、TEM、N_2吸附-脱附等对多孔NiO、NiCo_2O_4电极的物相、形貌结构、孔径分布进行表征,并通过循环伏安、恒电流充放电等方法测试多孔电极的电化学性能。结果表明,得到的纳米多孔NiO具有均匀的"泥裂"式结构,在1A·g~(-1)电流密度下比电容为375 F·g~(-1),当电流密度增加至20 A·g~(-1)时的比容保持率为67.5%,在4 A·g~(-1)电流密度下循环充放电1 000次,比容保持率为81.7%;NiCo_2O_4形成典型的开放式纳米多孔双连续结构,其在1A·g~(-1)电流密度下比电容为674 F·g~(-1),当电流密度增加至20 A·g~(-1),比容保持率达72.0%;在4 A·g~(-1)电流密度下循环充放电1 000次,比容保持率达92.9%,双连续纳米多孔结构及其提供的机械稳定性,使得NiCo_2O_4表现出更为优异的超电容性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号