首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Tetrahedron: Asymmetry》2005,16(16):2810-2815
Saccharomyces cerevisiae, strain DBM 2115, was successfully employed in the reduction of the separated Z- and E-isomers of ethyl 4-[(2-oxocyclohexyl)methyl]phenoxy-3-methyl-2-butenoates 1 and 2, in order to prepare the (1S,2S)- and (1R,2S)-enantiomers of the corresponding ethyl 4-[(2-hydroxycyclohexyl)methyl]phenoxy-3-methyl-2-butenoates 36. The products were obtained with the required absolute configuration: (1S,2S)-3 (ee = 98%; yield 48%), (1R,2S)-4 (ee = >99%; yield 45%), (1S,2S)-5 (ee = 98.5%; yield 47%), and (1R,2S)-6 (ee = >99%; chemical yield 44%).  相似文献   

2.
The stereoselective reduction of ethyl 2-(benzamidomethyl)-3-oxobutanoate 1 using yeasts was investigated among a restricted number (12) of yeasts. Kluyveromyces marxianus var. lactis CL69 diastereoselectively produced (2R,3S)-ethyl 2-(benzamidomethyl)-3-hydroxybutanoate 2, whereas Pichia glucozyma CBS 5766 gave (2S,3S)-2 as the major stereoisomer. The biotransformations were independently optimized for minimizing by-product formation and maximizing the diastereoselectivity. Under optimized conditions, K. marxianus var. lactis CL 69 gave the (2R,3S)-ethyl 2-(benzamidomethyl)-3-hydroxybutanoate 2 with ee > 99% and de = 98%, while P. glucozyma CBS 5766 allowed for the production of (2S,3S)-2 with ee > 99% and de = 86%.  相似文献   

3.
《Tetrahedron: Asymmetry》2007,18(18):2125-2128
Lipase-catalyzed esterification of (±)-methyl 1′-(1-hydroxyethyl)ferrocene-1-carboxylate 4 afforded its (R)-acetate (−)-5 (ee = 99%) and (S)-(+)-4 (ee = 90%). Stereoretentive azidation/amination/acetylation of (R)-(−)-5 gave (R)-(+)-methyl 1′-(1-acetamidoethyl)ferrocene-1-carboxylate (R)-3 (ee = 98%). In a similar manner (S)-(+)-4 was converted into (S)-(−)-3 (ee = 84%). Both enantiomers of 3 were obtained in high chemical yields without a loss of enantiomeric purity. The title compounds can be coupled with natural amino acids and peptides on both C- and N-termini.  相似文献   

4.
A series of rigid and chiral C2-symmetric 18-crown-6 type macrocycles (S,S)-4, (S,S)-5, (S,S)-6 and (R,R)-2 bearing diamide–ester groups were synthesized. The binding properties of these macrocycles were examined for α-(1-naphthyl)ethylammonium perchlorates salts by an 1H NMR titration method. Taking into account the host employed, important differences were observed in the Ka values of (R)- and (S)-enantiomers of guests for macrocycles (S,S)-4 and (S,S)-6, KS/KR = 3.6, and KS/KR = 0.1 (KR/KS = 10.3) ΔΔG = 3.19 and ΔΔG = ?5.77 kJ mol?1, respectively. The results indicated excellent enantioselectivity of macrocyclic (S,S)-6 towards the enantiomers of α-(1-naphthyl)ethylammonium perchlorate salts.  相似文献   

5.
《Tetrahedron: Asymmetry》2007,18(4):513-519
Total synthesis of (4R,5S,6E,14S)- and (4R,5S,6E,14R)-cystothiazoles F 3 was achieved from the chiral bithiazole-type primary alcohols [(S)- and (R)-4-ethoxycarbonyl-2′-(1-hydroxymethylethyl)-2,4′-bithiazoles 8], which were obtained based on the enzymatic resolution of racemic alcohol 8 and its acetate 9. From a direct comparison by means of chiral HPLC between natural cystothiazole F 3 and synthetic compounds [(4R,5S,6E,14S)- and (4R,5S,6E,14R)-cystothiazoles 3], natural cystothiazole F 3 was found to be a 33:67 diastereomeric mixture [(4R,5S,6E,14S)-3:(4R,5S,6E,14R)-3 = 33:67].  相似文献   

6.
《Tetrahedron: Asymmetry》2014,25(18-19):1264-1269
Biotransformation of 3-chloro-1-phenylpropan-1-one 1 in sixteen selected cultures of yeast strains has been carried out. For most of the biocatalysts studied the substrate was fully consumed after 1–9 h of transformation, with the exception of the culture of Saccharomyces brasiliensis KCh 905, in which after 24 h trace amounts of the substrate were still visible (2%). However, apart from the expected enantiospecific reduction of the substrate to 3-chloro-1-phenylpropan-1-ol 3, the main biotransformation products comprised of a dehalogenation product—propiophenone 2 and the product of its reduction—1-phenylpropan-1-ol 4. It was only in the cultures of five strains: Saccharomyces brasiliensis KCh 905, Rhodotorula marina KCh 77, Candida parapsilosis KCh 909, Candida viswanathii KCh 120, and Saccharomyces cerevisiae KCh 464 that 3-chloro-1-phenylpropan-1-ol 3 was observed in amounts of more than 10% of the product mixture. (S)-3-Chloro-1-phenylpropan-1-ol with ee = 91% was identified after 9 h of biotransformation in the culture of Candida viswanathii KCh 120, whereas (R)-3-chloro-1-phenylpropan-1-ol with ee = 28% was found in the culture of Aphanocladium album KCh 417. 1-Day biotransformation of propiophenone 2 in the cultures of Rhodotorula strains gave (S)-1-phenylpropan-1-ol 4 with a very high ee (95–99%) and 85–99% of substrate conversion, whereas transformation of this substrate in the cultures of Candida viswanathii KCh 120 and Candida parapsilosis KCh 909 led to (R)-1-phenylpropan-1-ol with ee = 98% and 97%, respectively. During biotransformation of propiophenone the percent composition of the reaction mixtures changed with time. Employment of the racemic mixture of 1-phenylpropan-1-ol 4 as a substrate for biotransformations allowed us to observe that the biocatalysts tested were capable of enantioselective oxidation of (S)-1-phenylpropan-1-ol. An exception was the culture of Rhodotorula glutinis KCh 242, in which after one day of biotransformation (S)-1-phenylpropan-1-ol was obtained with ee = 96%.  相似文献   

7.
Enthalpies of mixing of (R)- and (S)-enantomers of liquid chiral compounds such as benzyl-(1-phenyl-ethyl)-amine (1), 1-phenylethylamine (2), 1-phenyl-ethanol (3), butyric acid oxiranylmethyl ester (4), 4-methyl-[1,3]dioxolan-2-one (5), 2-Chloromethyloxirane (6) and 3-hydroxyisobutyric acid methyl ester (7) have been measured over the whole range of mole fractions at 298.15 K, albeit very small values. Mixing of heterochiral liquids of R-1 + S-1, R-5 + S-5, and R-7 + S-7 realized enthalpic stabilization over the whole range of mole fractions, whereas that of R-2 + S-2, R-3 + S-3, R-4 + S-4, and R-6 + S-6 realized enthalpic destabilization over entire compositions. The extreme values of enthalpies of mixing and the intermolecular interaction obtained by the molecular mechanics calculations showed a linear correlation, except few the compounds measured.  相似文献   

8.
Both enantiomers of calycotomine (R)-5 and (S)-5 were prepared through the CAL-B-catalysed asymmetric O-acylation of N-Boc-protected (6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol [(±)-3)]. The optimum conditions for the enzymatic resolution were determined under continuous-flow conditions, while the preparative-scale resolution of (±)-3 was performed as a batch reaction with high enantioselectivity (E >200). The resulting amino alcohol (S)-3 and amino ester (R)-4, obtained with high enantiomeric excess (ee = 99%), were transformed into the desired calycotomine (S)-5 and (R)-5 (ee = 99%). A systematic study was carried out in a continuous-flow system on the O-acylation of tetrahydroisoquinoline amino alcohol homologues (±)-1 to (±)-3 containing a remote stereogenic centre.  相似文献   

9.
《Tetrahedron: Asymmetry》2004,15(2):323-333
N-Benzyloxycarbonyl-2,5-dideoxy-2,5-imino-3,4-O-isopropylidene-l-ribose 12a has been converted into (1R,2S,6R,7S,7aS)-5 and (1R,2S,6S,7R,7aR)-1,2,6,7-tetrahydroxypyrrolidin-5-ones 6 and (1R,2S,6S,7S,7aS)-7 and (1R,2S,6R,7R,7aS)-1,2,6,7-tetrahydroxypyrrolizidines 8 following stereoselective paths. These new compounds have been assayed for their inhibitory activities towards 25 glycosidases. Pyrrolizidines 7 and 8 are moderate but selective inhibitors of amyloglucosidase from Rhizopus mold (7: IC50=130 μM, Ki=120 μM; 8: IC50=200 μM, Ki=180 μM, mixed type of inhibition).  相似文献   

10.
The chemo-enzymatic synthesis of racemic and enantiopure (RS)- and (S)-enciprazine 1, a non-benzodiazepine anxiolytic drug, is described herein. The synthesis started from 1-(2-methoxyphenyl) piperazine 3, which was treated with 2-(chloromethyl) oxirane (RS)-4 using lithium bromide to afford a racemic alcohol, 1-chloro-3-(4-(2-methoxyphenyl) piperazin-1-yl) propan-2-ol (RS)-6 in 85% yield. Intermediate (S)-6 was synthesized from racemic alcohol (RS)-6 using Candida rugosa lipase (CRL) with vinyl acetate as the acyl donor. Various reaction parameters such as temperature, time, substrate, enzyme concentration, and the effect of the reaction medium on the conversion and enantiomeric excess for the transesterification of (RS)-6 by CRL were optimized. It was observed that 10 mM of (RS)-6, 50 mg/mL of CRL in 4.0 mL of toluene with vinyl acetate (5.4 mmol) as acyl donor at 30 °C gave good conversion (C = 49.4%) and enantiomeric excess (eeP = 98.4% and eeS = 96%) after 9 h of reaction. Compound (S)-6 is a key intermediate for the synthesis of enantiopure (S)-1. The (RS)- and (S)-enciprazine drug 1 was synthesized by treating (RS)- and (S)-6 with 3,4,5-trimethoxyphenol 5 using MeCN as a solvent and K2CO3 as a base.  相似文献   

11.
《Tetrahedron: Asymmetry》2007,18(15):1809-1827
The dipolar cycloaddition of (Z)-N-benzyl-(3-O-benzyl-1,2-O-isopropylidene-α-d-ribofuranos-5-ylidene)amine N-oxide to methyl acrylate gives a 53:16:26:5 diastereomeric mixture of isoxazolidine derivatives. The dipolar cycloaddition of the xylo analogue to methyl acrylate is more diastereoselective, producing a 44:13:43 mixture of only three diastereomers. The ribo-configured adducts have been converted (4 steps only) into the new (2R,6S,7S,8R,8aR)-, (2S,6S,7S,8R,8aR)-, (2S,6S,7S,8R,8aS)- and (2R,6S,7S,8R,8aS)-2,6,7,8-tetrahydroxyindolizidines. Similarly, the two xylo-configured major isoxazolidine derivatives were converted into the known derivatives (2R,6S,7R,8R,8aS)- and (2S,6S,7R,8R,8aR)-2,6,7,8-tetrahydroxyindolizidines. The six isomeric indolizidine derivatives obtained have been evaluated for their inhibiting activities towards 15 glycosidases. Only the (2R,6S,7S,8R,8aR)-configured isomer is a selective inhibitor of amyloglucosidases from Aspergillus niger (IC50 = 350 μM) and from Rhizopus mold (IC50 = 90 μM, Ki = 195 μM, non-competitive), the other indolizidines show very little inhibitory activity at 1 mM concentration.  相似文献   

12.
Racemic 3-(4-indolyloxy)-1,2-propanediol 2 has been effectively resolved into (S)- and (R)-enantiomers by a preferential crystallization procedure. Non-racemic (S)-2 was converted into (S)-4-(2,3-epoxypropoxy)-1H-indole (S)-4 via a Mitsunobu reaction and then into (S)-pindolol (S)-1. The crystalline (S)-1 was studied by single crystal X-ray diffraction. A large number of symmetry independent molecules (Z = 6) led to a weakening of the system of strong intermolecular hydrogen bonds, which combined with a loose packing (PI = 64.6%), may be the cause of the abnormally low melting point of (S)-1 as compared with rac-1.  相似文献   

13.
The first enantioselective synthesis of (3S,4aR,8aR)-1 (the enantiomer of natural okundoperoxide) has been accomplished. The synthesis features: 1) stereoselective installation of the peroxy functionality (16  17); 2) ring opening of peroxyacetal and subsequent intramolecular reaction between the hydroperoxide and the vinyl epoxide to form the peroxy six-membered ring (5  1). The absolute configuration of okundoperoxide was determined to be 3R,4aS,8aS by comparing specific rotations of the synthetic sample and the natural product.  相似文献   

14.
《Tetrahedron: Asymmetry》2006,17(11):1663-1670
The synthesis of chiral ligands 418 derived from N-[(S)-α-phenylethyl]-trans-β-aminocyclohexanols (S,S,S)-1a and (R,R,S)-2 is described. Addition of diethylzinc to benzaldehyde catalyzed by ligands 418 (6 mol %) proceeds in fair to good yield (45–86%), and low to good enantioselectivities (1–76% ee). Highest enantioselectivities were induced by ligands (S,S,S)-4 and (S,S,S,S,R,R)-18 (76% and 68% ee, respectively). The configuration of the major enantiomer of carbinol 3 is (R) in both cases.  相似文献   

15.
《Tetrahedron: Asymmetry》2005,16(23):3887-3891
Indium-mediated allylation of N-Cbz-l-prolinal 3, under Grignard conditions, was carried out with high yield and stereoselectivity (de = 90%) to afford intermediate (2S,1′R)-N-benzyloxycarbonyl-2-(1′-hydroxybut-3′-en-1′-yl)pyrrolidine 4, which was transformed in two steps into (1R,3R,7aS)-1-hydroxy-3-hydroxymethylpyrrolizidine 9. Commercial Cbz-l-proline was a source of functionalization and chirality.  相似文献   

16.
Pyridine-based macrocycles were prepared by treating 2,6-bis[[2′6′-bis(bromomethyl)-4′-methylphenoxy]methyl]pyridine 3 with the appropriate chiral aminoalcohols. The enantiomeric recognition of these macrocycles bearing aminoalcohol subunits of the pyridinocrown type ligand was evaluated for chiral organic ammonium salts by UV titration. The important differences were observed in the Ka values of (R)-Am2 and (S)-Am2 for (S,S,S)-1, (S,S,S)-2 and (S,S,S)-3 hosts, KS/KR = 5.0, KS/KR = 2.4 and KS/KR = 5.0, respectively. There seems to be a general tendency for hosts to recognise (S)-enantiomers for both Am1 and Am2.  相似文献   

17.
Novel stereoisomeric natural pinane-derived bifunctional catalysts 3a–d bearing a pyrrolidine unit have been synthesized and examined in the asymmetric conjugate additions of carbonyl compounds to α-nitroalkenes. Six-membered cyclic ketones react with β-nitrostyrene derivatives in the presence of (1R,2R,3R,5R)-2-hydroxy-3-((S)-pyrrolidin-2-ylmethylamino) pinane 3b (10 mol %) with high conversion to afford with diastereoselectivity (dr (syn/anti) up to 97/3), the corresponding Michael adducts with enantiomeric purities of up to 88% ee.  相似文献   

18.
《Tetrahedron: Asymmetry》2007,18(17):2079-2085
Lipases from the bacterial strain, Pseudomonas aeruginosa, isolated from the soil by enrichment techniques, are assessed for the enantioselective transesterification of (RS)-1-chloro-3-(3,4-difluorophenoxy)-2-propanol (rac-CDPP) to (R)-1-chloro-3-(3,4-difluorophenoxy)-2-propanol, a key intermediate in the synthesis of the chiral drug (S)-Lubeluzole. The lipases produced by the organism yielded the (S)-ester and the (R)-alcohol as the remaining substrate with an excellent yield (>49.9%) and almost complete enantioselectivity (ee >99.9%) in the presence of vinyl butyrate as an acyl donor in an organic medium. In contrast, purified and expensive commercially available lipases of Candida rugosa and porcine pancreas achieved much lower conversion with enantioselectivities of 15% and 5%, respectively. A well-mixed (∼1000 rev min−1) batch reactor having the aqueous phase finally dispersed in hexane was used in these studies. The parameters of the transesterification reaction were optimized and the optimal concentrations of rac-CDPP and vinyl butyrate were found to be 5 and 150 mM at 30 °C. A preparative-scale reaction yielded the (S)-ester at 42% conversion and ee >99%.  相似文献   

19.
《Tetrahedron: Asymmetry》2007,18(14):1682-1687
Racemic ethyl 3-hydroxybutanoate rac-1 was transformed into ethyl (R)-acetoxybutanoate (ee = 92%) with 85–90% chemical yields using enantioselective acylation with isopropenyl acetate in the presence of Candida antarctica lipase B (CAL-B, Novozym 435) under solvent-free conditions, followed by mesylation of the unreacted (S)-alcohol in the reaction mixture and inversion of configuration with cesium acetate in DMF in one pot. When the (R)-acetoxybutanoate was subjected to alcoholysis with ethanol and CAL-B, enantiopure (R)-1 (ee >99%) was produced.  相似文献   

20.
《Tetrahedron: Asymmetry》2005,16(4):899-901
Lactobacillus kefir was used as the whole cell biocatalyst for the asymmetric reduction of ethyl 4-chloro acetoacetate 1 to the chiral synthon ethyl (S)-4-chloro-3-hydroxybutanoate 2. Ketoester 1 was obtained as micro-droplets, without the use of an organic solvent as substrate reservoir. 2 (1.2 M) was produced using 2-propanol as co-substrate with a final yield of 97% within 14 h. A high space-time yield and a high specific product capacity of 85.7 mmol/L h and of 24 mmol/gDCW were measured. The enantiomeric excess of the (S)-alcohol 2 was 99.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号