首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Tetrahedron: Asymmetry》2006,17(8):1290-1295
Acetovanillone has been used as the starting material for the synthesis of a series of secondary alcohols, which were resolved by lipase catalyzed esterification. 1-(4-Benzyloxy-3-methoxyphenyl)ethanol was efficiently resolved using immobilized lipase B from Candida antarctica (Novozym 435, CAL-B), whereas immobilized lipase A from C. antarctica (Novozym 735, CAL-A) was the lipase of choice for the resolution of the corresponding 2-bromo- and 2-chloro-derivatives. The enantioenriched alcohols are new building blocks for potential use in the synthesis of bioactive compounds.  相似文献   

2.
《印度化学会志》2021,98(10):100143
Lipases are ubiquitous enzymes that belong to family of serine hydolases with a wide variety of industrial applications. This study reports isolation, screening and identification of enantioselctive lipase producing microorganism for kinetic resolution of racemic alcohols. For this, we collected soil samples from different oil rich environments and we performed primary screening that was by carried out by using MSM-tributryin clear zone assay. The selected samples from first screen were subjected to secondary screening to distinguish lipase producing strains from esterase producing strains using p-nitrophenyl palmitate lipase assay. In tertiary screening, 16 lipase producing strains that were identified in secondary screening were employed for resolution of 5 different (RS)-alcohols. Out of all 16 lipase producing strains, only one strain selectively converted 3 racemic alcohols. Based on morphological, biochemical and physiological characteristics, and 16S rRNA gene sequencing, the strain was identified as Pseudomonas beteli. The strain was found to be S-selective and there been no reports on use of Pseudomonas beteli lipase for kinetic resolution of alcohols. The lipase activity was further increased by media optimization and by improving growth conditions, and production of lipase in shake flask study as well as in laboratory scale fermenter. The optimum time for enzyme production by Pseudomonas beteli was 96 ​h whereas cell mass growth was highest at 72 ​h. Optimum temperature and pH were 30 ​°C and 6, respectively. Beef extract (5 ​g/L), peptone (5 ​g/L), sodium chloride (5 ​g/L), yeast extract (1 ​g/L) and glucose (5 ​g/L) were found as optimum nutrition sources for the cell mass growth and lipase production by Pseudomonas sp. Overall, 3.4 times higher enzyme activity and 2.75 times higher cell mass growth were achieved in bioreactor in comparison to the shake flask study. Lipase having high titer was employed successfully for the kinetic resolution of several drug intermediates.  相似文献   

3.
Lipase B from Candida antarctica can be directly immobilized onto functionalized superparamagnetic nanoparticles, preserving its enzymatic activity in the enantioselective transesterification of secondary alcohols, with excellent results in terms of enantiomeric discrimination. The immobilized enzyme can be easily recovered with a magnet, allowing its reuse with negligible loss of activity.  相似文献   

4.
《Tetrahedron: Asymmetry》2005,16(4):847-850
Decreasing enantioselectivity (E-value) by increasing conversion has been observed in transesterification reactions of secondary alcohols catalyzed by a pure protein formulation of lipase B from Candida antarctica (Novozym 525 F). Addition of a range of enantiopure alcohols caused a temporary increase in selectivity of the transesterification reaction of 3-chloro-1-phenoxy-2-propanol with vinyl butanoate. The corresponding immobilized lipase B, (Novozym 435) showed a similar relationship between the E-value and degree of conversion.  相似文献   

5.
By using lipase PS-30 as catalyst, the kinetic resolution of a series of racemic allylic alcohols has been achieved via stereoselective acylation. The value of kinetic enantiomeric ratio (E) reached up to 968. Substituent effect is briefly discussed.  相似文献   

6.
A novel kind of immobilized enzyme affinity selection strategy based on hollow fibers has been developed for screening inhibitors from extracts of medicinal plants. Lipases from porcine pancreas were adsorbed onto the surface of polypropylene hollow fibers to form a stable matrix for ligand fishing, which was called hollow fibers based affinity selection (HF-AS). A variety of factors related to binding capability, including enzyme concentration, incubation time, temperature, buffer pH and ion strength, were optimized using a known lipase inhibitor hesperidin. The proposed approach was applied in screening potential lipase bound ligands from extracts of lotus leaf, followed by rapid characterization of active compounds using high performance liquid chromatography–mass spectrometry. Three flavonoids including quercetin-3-O-β-d-arabinopyranosyl-(1 → 2)-β-d-galactopyranoside, quercetin-3-O-β-d-glucuronide and kaempferol-3-O-β-d-glucuronide were identified as lipase inhibitors by the proposed HF-AS approach. Our findings suggested that the hollow fiber-based affinity selection could be a rapid and convenient approach for drug discovery from natural products resources.  相似文献   

7.
A method is described for the isolation and purification of lipoprotein lipase activity from the culture liquid of the fungusRhizopus microsporus. Some properties of the homogeneous enzyme have been studied: molecular weight 43,000, pI 3.7.  相似文献   

8.
On the basis of the X-ray crystal structure of the lipase from Pseudomonas cepacia (PcL)-an enzyme representative for a whole family of Pseudomonas lipases (lipase PS, SAM-2, AK 10, and others with a high degree of homology with PcL)-a computational study was performed to rationalize both the enantioselectivity and substrate specificity (tolerance) displayed by this lipase in the enantioselective hydrolysis of racemic esters 1a-12a from various secondary aromatic alcohols. The major goal of this project was the development of a binding model for PcL which is able to rationalize the experimental findings to predict "a priori the enantioselective behavior of PcL toward a wider range of substrates. A two-step modeling procedure, namely, docking experiments followed by construction of tetrahedral intermediates, was used for the simulation of the involved enzyme-substrate recognition/hydrolysis processes. The study of the recognition process (docking experiments) led to unambiguous identification of the binding geometry for the two enantiomeric series of substrates, but did not suggest a definitive interpretation of the behavior of PcL. Taking into consideration the stereoelectronic requirements of the enzymatic hydrolysis reaction, both the enantioselectivity and tolerance of the enzyme were then explained through the study of the tetrahedral intermediates, in turn constructed from the calculated docking geometries of 1a-12a.  相似文献   

9.
Candida rugosa lipase was modified via reductive alkylation to increase its hydrophobicity to work better in organic solvents. The free amino group of lysines was alkylated using propionaldehyde with different degrees of modification obtained (49 and 86%). Far-ultraviolet circular dichroism (CD) spectroscopy of the lipase in aqueous solvent showed that such chemical modifications at the enzyme surface caused a loss in secondary and tertiary structure that is attributed to the enzyme unfolding. Using molecular modeling, we propose that in an aqueous environment the loss in protein structure of the modified lipase is owing to disruption of stabilizing salt bridges, particularly of surface lysines. Indeed, molecular modeling and simulation of a salt bridge formed by Lys-75 to Asp-79, in a nonpolar environment, suggests the adoption of a more flexible alkylated lysine that may explain higher lipase activity in organic solvents on alkylation.  相似文献   

10.
The triphenylmethyl group gives very simple access to the 1-protection of 1,2-diol as exemplified by racemic propane-1,2-diol. This group has, however, been shown to be incompatible with lipases commonly used for the resolution of alcohols. This turned out to be the case for Pseudomonas cepacia lipase, which we have used in our earlier work. Lipozyme, a Mucor miehei lipase, best known for 1,3-selectivity with glycerol is, however, shown to catalyze transacetylation onto the secondary hydroxyl group next to a triphenylmethoxy group. The transacetylation is completely enantioselective for the (R)-enantiomer giving a very simple method for the resolution of this type of 1,2-diol enantiomer.  相似文献   

11.
The lipase B from Candida antarctica (Novozym 435?, CALB) efficiently catalyzed the kinetic resolution of some aliphatic secondary alcohols: (±)-4-methylpentan-2-ol (1), (±)-5-methylhexan-2-ol (3), (±)-octan-2-ol (4), (±)-heptan-3-ol (5) and (±)-oct-1-en-3-ol (6). The lipase showed excellent enantioselectivities in the transesterifications of racemic aliphatic secondary alcohols producing the enantiopure alcohols (>99% ee) and acetates (>99% ee) with good yields. Kinetic resolution of rac-alcohols was successfully achieved with CALB lipase using simple conditions, vinyl acetate as acylating agent, and hexane as non-polar solvent.  相似文献   

12.
A kinetic study ofChromobacterium viscosum lipase was undertaken, and compared withPseudomonas glumae lipase. Optimum operation conditions were pH 9.0 and 50°C for both enzymes. A substrate specificity study was also developed. Both enzymes showed higher activity on triglycerides with a long chain of fatty acid; the specific activity was always higher for C.viscosum lipase. Stability of both enzymes in aqueous medium at 60°C and pH 9.0 was evaluated. C.viscosum lipase was three times more stable than P.glumae lipase, with at 1/2 value of 0.75 h. In addition, the activity of C.viscosum lipase with substrate concentration was studied with a triolein emulsion. A dependence of the intrinsic characteristics of the emulsion was observed. Therefore, stability ofC. viscosum lipase B with reaction products was assayed in a micellar system. Acid products reduced the specific activity of the enzyme. Glycerol and high buffer concentration were stabilizers of enzyme deactivation. Finally, substrate specificity ofC. viscosum lipase B in a micellar system was developed with tributyrin, tricaprylin, and triolein. Only tributyrin showed an apparent Michaelis-Menten kinetic with Vmax app = 958 U/mg and Kma app = 75.5 mM. Tricaprylin and triolein showed diffusion limitations at low substrate concentration and substrate inhibition at high substrate concentration. Diffusion parameters were calculated for both these substrates. Mass transfer coefficients (k1) were 0.314 Å/min and 1.53 Å/min for tricaprylin and triolein, respectively. Effectiveness factors (η) were 0.536 and 0.768 for tricaprylin and triolein, respectively.  相似文献   

13.
《Tetrahedron: Asymmetry》1999,10(23):4599-4605
Racemic methyl 2-aryloxypropionates (±)-1 were subjected to hydrolysis in water and in a series of two-phase aqueous organic media in the presence of Candida rugosa lipase (CRL). The biocatalytic material used was the enzyme of commercial CRL purified by treatment with different alcohols. The purification of CRL and the reaction medium play an important role in the enantioselection of racemates (±)-1. While it is not possible to use the same protocol for all substrates, by combining the different ways of purifying the enzyme with the various reaction media, it is possible to achieve high enantioselectivities of racemic esters.  相似文献   

14.
Highly active Pseudomonas aeruginosa lipase protein-coated microcrystals (PAL PCMC) have been prepared by immobilization of protein onto K2SO4 as excipient solid support carrier and n-propanol as precipitating solvent. Transmission electron micrographs confirmed the formation of PAL PCMC. These PCMC were found to be a catalytically more active and stable preparation for p-nitrophenyl palmitate hydrolysis in n-heptane, compared to free lipase. The V max, K m, and temperature optimum for PAL PCMC increased from 0.49 to 5.66 nmol min?1 mg?1, 589 to 679.8 mmol, and 40°C to 45°C, respectively. These were thermally more stable with 4.65, 2.56, and 1.24-fold improvement in half lives at 45°C, 55°C, and 60°C compared to free P. aeruginosa PseA lipase. Their catalytic efficiency was enhanced by tenfold over that of free enzyme. PAL PCMC offer a simple and effective technique for obtaining stable and efficient lipase preparation for biocatalysis in nonaqueous medium.  相似文献   

15.
The enantioselectivity of a Burkholderia cepacia lipase toward secondary alcohols could be both increased and decreased rationally by introducing only a single mutation on the basis of the mechanism proposed previously.  相似文献   

16.
The preparative scale kinetic resolution of racemic ethyl 2- and 3-furyl- and 2- and 3-thienyl-3-hydroxypropanoates has been performed by Candida antarctica lipases A and B with vinyl esters. A study based on the present work together with the literature has been carried out in terms of lipase enantiopreference and substrate structure. We also discuss the excellent behavior of the lipase A in O-acylations of secondary alcohols with respect to enantiopreference.  相似文献   

17.
Lipase from rape (Brassica napus L., immobilized onto celite, catalyzes esterification and transesterification reactions in hexane. The activity of the lipase is stimulated up to 35 fold by the addition of water (1.3% w/v). The activity of the lipase in hydrolysis is about 8 times higher than in the esterification reactions in hexane. Interesteri-fication reactions between mono- and diacylglycerols and transesterification reactions of mono- and diacylglycerols with alcohols were also catalyzed at relatively high rates but transesterification/esterification of these acylglycerols with fatty acids was comparatively slow. In transesterification reactions, triacylglycerols reacted rather slowly.  相似文献   

18.
An environmental friendly process to selectively acetylate primary alcohols was demonstrated. The esterification process consists of treatment of a primary alcohol in the presence of immobilized C. antarctica lipase (Novozyme-435) in ethyl acetate at room temperature. Primary alcohols were acetylated in the presence of secondary alcohols and phenols.  相似文献   

19.
An extracellular lipase from Fusarium solani strain (F. solani lipase (FSL)) was purified to homogeneity by ammonium sulphate precipitation, gel filtration and anion exchange chromatography. The purified enzyme has a molecular mass of 30 kDa as estimated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The 12 NH2-terminal amino acid residues showed a high degree of homology with a putative lipase from the fungus Necteria heamatoccocae. It is a serine enzyme, like all known lipases from different origins. Interestingly, FSL has not only lipase activity but also a high phospholipase activity which requires the presence of Ca2+ and bile salts. The specific activities of FSL were about 1,610 and 2,414 U/mg on olive oil emulsion and egg-yolk phosphatidylcholine as substrates, respectively, at pH 8.0 and 37 °C. The (phospho)lipase enzyme was stable in the pH range of 5–10 and at temperatures below 45 °C.  相似文献   

20.
Poly(methyl methacrylate) (PMMA) was found to be suitable for the immobilization of lipase fromCandida rugosa. The best result based on hydrolytic activity was obtained by adsorption of the purified unbuffered enzyme solution onto PMMA beads without any modification of the beads. Prolonged exposure of the protein to the beads increased its adsorption but the expressed activity decreased after 1 h of exposure. The magnitude of the immobilized activity also varied with the size of the beads. Immobilization of the lipase shifted its optimal reaction temperature from 37 to 45°C. The immobilized enzyme is also more stable than the free enzyme in solution. The operational half-life of the immobilized lipase packed in a column and assayed in a closed system is 40 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号