首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
By reaction of K4[SnSe4].1.5 MeOH with CdCl2 or Hg(OAc)2 in water/methanol it was possible to prepare single crystals of four novel compounds that contain ternary anionic coordination oligomers and polymers: [K10(H2O)16(MeOH)(0.5)][M4(mu4-Se)(SnSe4)4] (4: M=Cd, 5: M=Hg), [K6(H2O)3][Hg4(mu4-Se)(SnSe4)3].MeOH (6), and K2[HgSnSe4] (7), which were structurally characterized by single-crystal X-ray diffraction. The optical absorption properties of the isostructural compounds 4 and 5, as well as those of the recently reported Zn (2) and Mn (3) analogues, were studied by UV-visible spectroscopy. These investigations showed the quaternary phases to have relatively small optical gaps for their molecular size (2.2-2.6 eV), which are similar to the excitation energies that were observed for mesostructured solids of the respective combination of elements. According to DFT investigations on the ternary anions, an experimentally observed difference between the absorption behavior of the d10 compounds 2, 4, and 5 and the open-shell d(5) compound 3 is in line with different characters of the frontier orbitals in the two cases. Both the calculations and a magnetic measurement on 3 demonstrated antiferromagnetic coupling between the mu(4)-Se-bridged Mn centers.  相似文献   

2.
A recently discovered series of quaternary compounds of the general type [K(m)(ROH)(n)()][M(x)Sn(y)()Se(z)] (R = H, Me), containing ternary anions with [SnSe(4)](4-)-coordinated transition metal centers (M = Co, Mn, Zn, Cd, Hg) has now been extended by the synthesis and characterization of the two ortho-thiostannate-coordinated species, [Na(10)(H(2)O)(32)][M(5)Sn(mu(3)-S)(4)(SnS(4))(4)].2H(2)O (M = Zn (1), Co (2)). The central structural motifs of compounds 1 and 2 are highly charged [M(5)Sn(mu(3)-S)(4)(SnS(4))(4)](10-) anions, being the first T3-type supertetrahedral ternary anions reported to date. The exposure of single crystals of 2 to a dynamic vacuum for several hours resulted in the reversible formation of a partially dehydrated, but still monocrystalline material of the composition [Na(10)(H(2)O)(6)][Co(5)Sn(mu(3)-S)(4)(SnS(4))(4)] (3). The loss of 28 of the 34 water molecules only slightly affects the internal structure of the ternary anion in 3 and leads to a significant compacting of the crystal structure with closer linkage of the [Co(5)Sn(5)S(20)](10-) cluster units via the Na(+) cations. Magnetic measurements on 3 show that the ground state of the Co/Sn/S cluster is S = 1/2, indicating a significant antiferromagnetic coupling between the Co centers, which has also been rationalized by DFT investigations of the electronic situation in the ternary subunits of 1-3.  相似文献   

3.
Lips F  Dehnen S 《Inorganic chemistry》2008,47(13):5561-5563
Reactions of defined mixtures of ternary salts [K 4(H 2O) 4][SnSe 4] and [K 4(H 2O) 0.5][SnTe 4] with transition-metal ions M = Zn (2+) or Mn (2+) provide an easy approach to penternary salts of quaternary cluster anions [M 4Sn 4Se 17- x Te x ] (10-), with x corresponding to the Se/Te ratio of the reactant mixture. In this way, it is possible to generate both protic solutions and single crystals with finely adjustable electronic excitation energies E g; the fact that the E g values cover the whole visible part of the electromagnetic spectrum as a function of the parameter x spotlights these cluster compounds with respect to diverse photocatalytic applications.  相似文献   

4.
[M(en)3]2Sn2Se6(M=Mn,Zn)的制备及其热稳定性   总被引:4,自引:0,他引:4  
陈震  王如骥 《物理化学学报》1999,15(12):1070-1075
用有机溶剂热生长技术(SolvothermalTechnique)制备过渡金属锰和锌硒化物[Mn(en)3]2Sn2Se6(Ⅰ),[Zn(en)3]2Sn2Se6(Ⅱ).用单晶X射线衍射技术对其进行晶体结构分析.[Zn(en)3]2Sn2Se6样品的热分析结果表明,该化合物的热分解分三步进行.光学性质测试表明它们是半导体材料,[Mn(en)3]2Sn2Se6的能带隙为1.76eV.[Zn(en)3]2Sn2Se6的能带隙为2.49eV.  相似文献   

5.
The reaction of K(2)Sn(2)Q(5) (Q = S, Se, Te) with stoichiometric amounts of alkyl-ammonium bromides R(4)NBr (R = methyl or ethyl) in ethylenediamine (en) afforded the corresponding salts (R(4)N)(4)[Sn(4)Q(10)] (Q = S, Se, Te) in high yield. Although the compound K(2)Sn(2)Te(5) is not known, this reaction is also applicable to solids with a nominal composition "K(2)Sn(2)Te(5)" which in the presence of R(4)NBr in en are quantitatively converted to the salts (R(4)N)(4)[Sn(4)Te(10)] on a multigram scale. These salts contain the molecular adamantane clusters [Sn(4)Q(10)](4-) and can serve as soluble precursors in simple metathesis reactions with transition metal salts to synthesize the large family of open-framework compounds (Me(4)N)(2)M[Sn(4)Se(10)] (M = Mn(2+), Fe(2+), Co(2+), Zn(2+)). Full structural characterization of these materials as well as their magnetic and optical properties is reported. Depending on the transition metal in (Me(4)N)(2)M[Sn(4)Se(10)], the energy band gaps of these compounds lie in the range of 1.27-2.23 eV. (Me(4)N)(2)Mn[Ge(4)Te(10)] is the first telluride analogue to be reported in this family. This material is a narrow band gap semiconductor with an optical absorption energy of 0.69 eV. Ab initio electronic band structure calculations validate the semiconductor nature of these chalcogenides and indicate a nearly direct band gap.  相似文献   

6.
Compounds with first discrete M/Sn/Te anions--exhibiting a series of optical absorption energies in the semiconductor range-are obtained by reactions of K+ or Rb+ salts of [SnTe4](4-) with MCl2 (M = Mn, Zn, Cd, Hg) in H2O or H2O-MeOH; larger Cs+ cations provoke the formation of a polymeric derivative of the ternary anionic structure.  相似文献   

7.
The rare-earth metal(III) oxide selenides of the formula La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were synthesized from a mixture of the elements with selenium dioxide as the oxygen source at 750 degrees C. Single crystal X-ray diffraction was used to determine their crystal structures. The isostructural compounds M4O4Se[Se2] (M=La, Ce, Pr, Nd, Sm) crystallize in the orthorhombic space group Amm2 with cell dimensions a=857.94(7), b=409.44(4), c=1316.49(8) pm for M=La; a=851.37(6), b=404.82(3), c=1296.83(9) pm for M=Ce; a=849.92(6), b=402.78(3), c=1292.57(9) pm for M=Pr; a=845.68(4), b=398.83(2), c=1282.45(7) pm for M=Nd; and a=840.08(5), b=394.04(3), c=1263.83(6) pm for M=Sm (Z=2). In their crystal structures, Se2- anions as well as [Se-Se]2- dumbbells interconnect {[M4O4]4+} infinity 2 layers. These layers are composed of three crystallographically different, distorted [OM4]10+ tetrahedra, which are linked via four common edges. The compounds exhibit strong Raman active modes at around 215 cm(-1), which can be assigned to the Se-Se stretching vibration. Optical band gaps for La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were derived from diffuse reflectance spectra. The energy values at which absorption takes place are typical for semiconducting materials. For the compounds M4O4Se[Se2] (M=La, Pr, Nd, Sm) the fundamental band gaps, caused by transitions from the valence band to the conduction band (VB-CB), lie around 1.9 eV, while for M=Ce an absorption edge occurs at around 1.7 eV, which can be assigned to f-d transitions of Ce3+. Magnetic susceptibility measurements of Ce4O4Se[Se2] and Nd4O4Se[Se2] show Curie-Weiss behavior above 150 K with derived experimental magnetic moments of 2.5 micro B/Ce and 3.7 micro B/Nd and Weiss constants of theta p=-64.9 K and theta p=-27.8 K for the cerium and neodymium compounds, respectively. Down to 1.8 K no long-range magnetic ordering could be detected. Thus, the large negative values for theta p indicate the presence of strong magnetic frustration within the compounds, which is due to the geometric arrangement of the magnetic sublattice in form of [OM4]10+ tetrahedra.  相似文献   

8.
The synthesis, structure, and physical properties of a novel series of oxalate-based bimetallic magnets obtained by using the Ir(ppy)2(bpy)]+ cation as a template of the bimetallic [M(II)M(III)(ox)3]- network are reported. The compounds can be formulated as [Ir(ppy)2(bpy)][M(II)Cr(III)(ox)3] x 0.5 H2O (M(II) = Ni, Mn, Co, Fe, and Zn) and [Ir(ppy)2(bpy)]-[M(II)Fe(III)(ox)3] x 0.5 H2O (M(II) = Fe, Mn) and crystallize in the chiral cubic space group P4(1)32 or P4(3)32. They show the well-known 3D chiral structure formed by M(II) and M(III) ions connected through oxalate anions with [Ir(ppy)2(bpy)]+ cations and water molecules in the holes left by the oxalate network. The M(II)Cr(III) compounds behave as soft ferromagnets with ordering temperatures up to 13 K, while the Mn(II)Fe(III) and Fe(II)Fe(III) compounds behave as a weak ferromagnet and a ferrimagnet, respectively, with ordering temperatures of 31 and 28 K. These values represent the highest ordering temperatures so far reported in the family of 3D chiral magnets based on bimetallic oxalate complexes.  相似文献   

9.
Several compositions of manganese-tin-bismuth selenide solid-solution series, Mn(1-x)Sn(x)Bi(2)Se(4) (x = 0, 0.3, 0.75), were synthesized by combining high purity elements in the desired ratio at moderate temperatures. X-ray single crystal studies of a Mn-rich composition (x = 0) and a Mn-poor phase (x = 0.75) at 100 and 300 K revealed that the compounds crystallize isostructurally in the monoclinic space group C2/m (no.12) and adopt the MnSb(2)Se(4) structure type. Direct current (DC) magnetic susceptibility measurements in the temperature range from 2 to 300 K indicated that the dominant magnetic ordering within the Mn(1-x)Sn(x)Bi(2)Se(4) solid-solutions below 50 K switches from antiferromagnetic (AFM) for MnBi(2)Se(4) (x = 0), to ferromagnetic (FM) for Mn(0.7)Sn(0.3)Bi(2)Se(4) (x = 0.3), and finally to paramagnetic (PM) for Mn(0.25)Sn(0.75)Bi(2)Se(4) (x = 0.75). We show that this striking variation in the nature of magnetic ordering within the Mn(1-x)Sn(x)Bi(2)Se(4) solid-solution series can be rationalized by taking into account: (1) changes in the distribution of magnetic centers within the structure arising from the Mn to Sn substitutions, (2) the contributions of spin-polarized free charge carriers resulting from the intermixing of Mn and Sn within the same crystallographic site, and (3) a possible long-range ordering of Mn and Sn atoms within individual {M}(n)Se(4n+2) single chain leading to quasi isolated {MnSe(6)} octahedra spaced by nonmagnetic {SnSe(6)} octahedra.  相似文献   

10.
Lin Y  Dehnen S 《Inorganic chemistry》2011,50(17):7913-7915
The reaction of [K(4)(H(2)O)(4)][SnSe(4)] with [BMIm][BF(4)] at 130-180 °C afforded [BMIm](4)[Sn(9)Se(20)] (1). The anion of the title compound represents a unique three-dimensional (3D) open framework, based on a variety of interconnectivity modes of Sn/Se units that lead to a system of six intersecting channels. 1 comprises the first example of a binary 3D open-framework selenidostannate anion and the first 3D open-framework chalcogenido metalate to be conveniently obtained by ionothermal synthesis.  相似文献   

11.
The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4) metallic core, indicates large spin ground states, with likely values of S = 16 (±1) for each. Solid state AC susceptibility measurements confirm the large spin ground state values and is also suggestive of SMM behaviour for 2-5 as observed via the onset of frequency dependent out-of-phase peaks.  相似文献   

12.
Bi J  Kong L  Huang Z  Liu J 《Inorganic chemistry》2008,47(11):4564-4569
Four novel three-dimensional (3D) microporous supramolecular compounds containing nanosized channels, namely, [Co(phen)2(H2O)2]2[Co(H2O)6].2BTC.21.5H2O (1), [Co(phen)2(H2O)2]2[Cu(H2O)6].2BTC.21.5H2O (2), [Co(phen)2(H2O)2]2[Mn(H2O)6].2BTC.18H2O (3), and [Zn(phen)2(H2O)2]2[Mn(H2O)6].2BTC.22.5H2O (4), were synthesized from 1,3,5-benzenetricarboxylate (BTC), 1,10-phenanthroline (phen), and the transition-metal salt(s) by self-assembly. Single-crystal X-ray structural analysis showed that the resulting 3D microporous supramolecular frameworks consist of a two-dimensional (2D) hydrogen-bonded host framework of [MII(H2O)6(BTC)2]4- (M=Co for 1, Cu for 2, Mn for 3, 4) with rectangular-shaped cavities containing [MII(phen)2(H2O)2]2+ (M=Co for 1-3, Zn for 4) guests. The guest complex is encapsulated in the 2D hydrogen-bonded host framework by hydrogen bonding and aromatic pi-pi stacking interactions, forming the 3D hydrogen-bonded framework. The catalytic activities of 1, 2, 3, and 4 were studied using hydroxylation of phenols with 30% aqueous H2O2 as a test reaction. The compounds displayed a good phenol conversion ratio and excellent channel selectivity in the hydroxylation reaction, with a maximum hydroquinone (HQ)/catechol (CAT) ratio of 3.9.  相似文献   

13.
Mechanochemical reaction of cluster coordination polymers 1infinity[M3Q7Br4] (M = Mo, W; Q = S, Se) with solid K2C2O4 leads to cluster core excision with the formation of anionic complexes [M3Q7(C2O4)3]2-. Extraction of the reaction mixture with water followed by crystallization gives crystalline K2[M3Q7(C2O4)3].0.5KBr.nH2O (M = Mo, Q = S, n = 3 (1); M = Mo, Q = Se, n = 4 (2); M = W, Q = S, n = 5 (3)). Cs2[Mo3S7(C2O4)3].0.5CsCl.3.5H2O (4) and (Et4N)1.5H0.5K{[Mo3S7(C2O4)3]Br}.2H2O (5) were also prepared. Close Q...Br contacts result in the formation of ionic triples {[M3Q7(C2O4)3](2)Br}5- in 1-4 and the 1:1 adduct {[Mo3S7(C2O4)3]Br}3- in 5. Treatment of 1 or 2 with PPh(3) leads to chalcogen abstraction with the formation of [Mo3(mu3-Q)(mu2-Q)3(C2O4)3(H2O)3]2-, isolated as (Ph4P)2[Mo3(mu3-S)(mu2-S)3(C2O4)3(H2O)3].11H2O (6) and (Ph4P2[Mo3(mu3-Se)(mu2-Se)3(C2O4)3(H2O)3].8.5H2O.0.5C2H5OH (7). All compounds were characterized by X-ray structure analysis. IR, Raman, electronic, and 77Se NMR spectra are also reported. Thermal decomposition of 1-3 was studied by thermogravimetry.  相似文献   

14.
Neutral trinuclear metal complexes L2Cd3 x 2H2O, L2Mn3 x MeOH, and L2Zn3 x MeOH were isolated in the reaction between the phosphorus-centered achiral tris(hydrazone) P(S)[N(Me)N=CHC6H(4)-o-OH]3 (LH3) and the corresponding divalent metal ions. The trinuclear complexes contain two equivalent terminal metal ions (M(t)) and a central metal ion (M(c)). The ligand encapsulates M(t) in a facial N3O3 coordination environment. From the coordination sphere of the two terminal metal ions a pair of phenolic oxygen atoms further coordinate to the central metal ion. The coordination requirements of M(c) are completed by the solvents of coordination. The achiral trianionic tripodal ligand (L)3- induces chirality in the metal complexes. This results in a delta (clockwise) or lambda (anticlockwise) configuration for the terminal metal ions. The enantiomeric complexes 2-4 (delta-delta or lambda-lambda) crystallize as racemic compounds. The supramolecular structures of 2-4 reveal chiral recognition in the solid-state; every molecule with the delta-delta configuration interacts stereospecifically, through C-H...S=P bonds, with two lambda-lambda molecules to generate a one-dimensional polymeric chain. Photophysical studies of the diamagnetic trinuclear complexes reveal that the tricadmium complex is luminescent in the solid state as well as in solution. In contrast LH3 and L2Zn3 x MeOH are nonluminescent.  相似文献   

15.
Reaction of M(OAc)(2).xH(2)O (M = Mn, Cu, or Cd) with di-tert-butyl phosphate (dtbp-H) in a 1:2 molar ratio in methanol followed by slow crystallization of the resultant solid in MeOH/THF medium results in the formation of three new polymeric metal phosphates [M(dtbp)(2)](n)() [M = Mn, 1 (beige); M = Cu, 2 (blue)] and [Cd(dtbp)(2)(H(2)O)](n)(), 3 (colorless)] in good yields. The formation of [Mn(dtbp)(2)](n) (1) proceeds via tetrameric manganese phosphate [Mn(4)(O)(dtbp)(6)] (4), which has been isolated in an analytically pure form. Perfectly air- and moisture-stable compounds 1-4 were characterized with the aid of analytical, thermoanalytical, and spectroscopic techniques. The molecular structures of 1-3 were further established by single-crystal X-ray diffraction studies. Crystal data for 1: C(32)H(72)Mn(2)O(16)P(4), monoclinic, P2(1)/c, a = 19.957(4) A, b = 13.419(1) A, c = 18.083(2) A, beta = 91.25(2) degrees, Z = 4. Crystal data for 2: C(16)H(36)CuO(8)P(2), orthorhombic, Pccn, a = 23.777(2) A, b = 10.074(1) A, c = 10.090(1) A, Z = 4. Crystal data for 3: C(48)H(114)Cd(3)O(27)P(6), triclinic, P1, a = 12.689(3) A, b = 14.364(3) A, c = 22.491(5) A, alpha = 84.54(3) degrees, beta = 79.43(3) degrees, gamma = 70.03(3) degrees, Z = 2. The diffraction studies reveal three different structural forms for the three compounds investigated, each possessing a one-dimensional coordination polymeric structure. While alternating triple and single dtbp bridges are found between the adjacent Mn(2+) ions in 1, uniform double dtbp bridges across the adjacent Cu(2+) ions are present in 2. The cadmium ions in the structure of 3 are pentacoordinated. Thermal analysis (TGA and DSC) indicates that compounds 1-3 convert to the corresponding crystalline metaphosphate materials M(PO(3))(2), in each case at temperatures below 500 degrees C. Similarly, the thermal decomposition of 4 results in the formation of Mn(PO(3))(3) and Mn(2)P(2)O(7). The final materials obtained by independent thermal decomposition of bulk samples have been characterized using IR spectroscopic, powder diffraction, and N(2) adsorption studies.  相似文献   

16.
A series of two-dimensional (2D) oxalate-based compounds, namely [N(n-C4H9)4][M(II)Cr(III)(ox)3] (M(II) = Mn, Fe; ox = C2O4(2-)) and [N(C2H5)(n-C3H7)(n-C4H9)(n-C5H11)][M(II)M(III)(ox)(3)] ((M(II), M(III)) =(Mn, Cr), (Fe, Cr), (Mn, Fe)) were synthesised starting from racemic tris(oxalato)metalate: rac-[M(III)(ox)3]3- (M(III) = Cr, Fe). For Cr(III), the synthesis has been undertaken starting from resolved (Delta)- or (Lambda)-[Cr(III)(ox)3]3-. The natural circular dichroism measurements assess the enantioselectivity of the synthesis. X-Ray powder diffraction analysis has revealed that, when racemic reagents are used to synthesise Mn(II) containing compounds, a R3c achiral space group is found. In contrast a P6(3) chiral space group is found when starting from (Delta)- or (Lambda)-[Cr(III)(ox)3]3-. Surprisingly, whatever the optical purity of the starting building block, all Fe(II) containing compounds crystallise in the P6(3) chiral space group. The magnetic properties of the synthesised compounds confirm that these compounds are ferromagnets for M(III)= Cr. For M(II)= Mn, Theta ranges between 9 and 11 K and T(c) equals 6 K. For M(II)= Fe, Theta ranges between 14 and 16 K and Tc between 11 and 12 K. [N(C2H5)(n-C3H7)(n-C4H9)(n-C5H11)][Mn(II)Fe(III)(ox)3] is an antiferromagnet with Theta = - 107 K and T(N) = 29 K.  相似文献   

17.
Interaction of the lacunary [alpha-XW9O33](9-) (X = As(III), Sb(III)) with Cu(2+) and Zn(2+) ions in neutral, aqueous medium leads to the formation of dimeric polyoxoanions, [(alpha-XW9O33)2M3(H2O)3](12-) (M = Cu(2+), Zn(2+); X = As(III), Sb(III)), in high yield. The selenium and tellurium analogues of the copper-containing heteropolyanions are also reported: [(alpha-XW9O33)2Cu3(H2O)3](10-) (X = Se(IV), Te(IV)). The polyanions consist of two [alpha-XW9O33] units joined by three equivalent Cu(2+) (X = As, Sb, Se, Te) or Zn(2+) (X = As, Sb) ions. All copper and zinc ions have one terminal water molecule resulting in square-pyramidal coordination geometry. Therefore, the title anions have idealized D3h symmetry. The space between the three transition metal ions is occupied by three sodium ions (M = Cu(2+), Zn(2+); X = As(III), Sb(III)) or potassium ions (M = Cu(2+); X = Se(IV), Te(IV)) leading to a central belt of six metal atoms alternating in position. Reaction of [alpha-AsW9O33](9-) with Zn(2+), Co(2+), and Mn(2+) ions in acidic medium (pH = 4-5) results in the same structural type but with a lower degree of transition-metal substitution, [(alpha-AsW9O33)2WO(H2O)M2(H2O)2](10-) (M = Zn(2+), Co(2+), Mn(2+)). All nine compounds are characterized by single-crystal X-ray diffraction, IR spectroscopy, and elemental analysis. The solution properties of [(alpha-XW9O33)2Zn3(H2O)3](12-) (X = As(III), Sb(III)) were also studied by 183W-NMR spectroscopy.  相似文献   

18.
取代型杂多化合物可改变多酸化合物的酸碱性、氧化还原性和热稳定性,因而受到关注[1]. 夹心型化合物是一类新型化合物,具有大的摩尔质量,高的负电荷,且含有多个磁性中心,近年来已引起国内外的兴趣[2].  相似文献   

19.
The reaction of manganese(II) acetate, 1,1,1-tris(hydroxymethyl)methane (H3thme), and triethylamine in methanol leads to the formation of [Mn12O2(OMe)2(thme)4(OAc)10(H2O)4].2MeOH. The [Mn(III)4Mn(II)8] core consists of a central [Mn(III)4O6] rhombus sandwiched by two [Mn(II)4O7] fragments. Frequency-dependent ac susceptibility and hysteresis loops in the magnetization indicate single-molecule magnet behavior with a pure quantum-tunneling regime of relaxation below 0.2 K.  相似文献   

20.
[Ba2(H2O)9][GeSe4] is suitable for the formation of novel M/14/16 anions [Mn6Ge4Se17]6- --discrete or linked in an as yet unprecedented porous network--with antiferromagnetically coupled Mn(II) centers and relatively small electronic excitation energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号