首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

The role of metal salts in inducing supramolecular gel network formation was analysed by reacting two pyridyl-N-oxide amides with various diamagnetic zinc(II) and cadmium(II) salts. Metal induced supramolecular gelation was observed for zinc(II) and cadmium(II) chloride complexes in water and the morphologies of the xerogels were analysed by scanning electron microscopy (SEM). The relative gel strength was corroborated with various non-bonding interactions observed in the solid-state structures of zinc(II) complexes using X-ray diffraction. The non-bonding interactions of the pyridyl-N-oxide amides and the metal complexes were compared to find the key interactions responsible for metallogel formation. The anion induced stimuli-responsive property of the metallogels was studied in the presence of halides and cyanide anions. The cadmium(II) gels were stable in presence of two equivalents of halides but the network collapsed in presence of cyanide anion in water and this property can be used to detect cyanide anions in water.  相似文献   

2.
Two new conjugates, hcptpyDP and hcptpyTP, of a terpyridine derivative incorporating artificial peptide moieties, have been synthesized and their use in the preparation of metal catalysts and organogelators has been investigated. Ru(II) complexes derived from these ligands showed electrochemical behavior and activity as catalysts in the epoxidation of olefins similar to that of Beller's catalyst. As organogelators, these conjugates were able to gelate a variety of solvents, from toluene to methanol, with satisfactory mgc (minimum gelation concentration) values. The presence of 4′-(4-carboxy)phenylterpyridine (hcptpy) moiety allows tuning the gelling properties and also influences the supramolecular self-assembling mode to produce chiral aggregates with respect to parent peptides DP and TP. In the case of the conjugates, π?π interactions provided by the aromatic moieties cooperate with inter-molecular hydrogen bonding between NH and CO in the amide groups. Further properties of peptide/terpyridine conjugates are under investigation in view of future applications.  相似文献   

3.
We describe the covalent modification of the edges of laponite with organic groups and the influence of this modification on gelation behavior. We compare three materials: an unmodified laponite, a laponite edge modified with a trimethyl moiety (MLap), and an octyldimethyl moiety (OLap). Gelation is investigated using rheology and NMR T1 relaxation measurements and nuclear Overhauser enhancement spectroscopy (NOESY). MLap and OLap show qualitatively different gelation. Gelation of MLap is very similar to laponite: MLap gels over the same time scale as laponite and has about the same solid modulus, and the MLap gel is almost as transparent as laponite. In contrast, OLap gels rapidly relative to laponite and forms a weak, turbid gel. We believe that gelation in laponite and MLap results from the formation of a network of well-dispersed platelets (or a few platelets), while in OLap, gelation results from a network of stacks of several platelets. NMR relaxation measurements indicate that gelation does not affect the average relaxation of water protons. However, T1 increases marginally for the protons in the organic moieties in MLap and decreases for protons in the organic moieties in OLap. Relaxation measurements, analyses of line width, and NOESY taken together suggest that, in OLap, gelation is a consequence of association of the organic moieties on the laponite edges, and that this association strengthens with time. Thus, the time-dependent changes in NMR suggest a structural origin for the time-dependent changes in the rheological behavior.  相似文献   

4.
In this contribution we report on the preparation of thermally responsive supramolecular gels obtained through self-assembling of metallo-organic polymers of lipophilic Fe(II) complexes of 1,2,4-triazole functionalized with octadecyl chains ([Fe(II) (4-octadecyl-1,2,4-triazole)3(ClO4)2]n) in three organic solvents: toluene, cis-decalin and trans-decalin. A gel phase is formed in these solvents by cooling the homogeneous complex solutions below a well-defined temperature, the so-called gelation threshold. These gels are reversible as they form homogeneous solutions upon heating above the melting temperature. The systems have been characterized for their thermal and viscoelastic properties through differential scanning calorimetry and rheological experiments, respectively. The effect of the solvent type and concentration on the gelation behaviour of the metallo-organic polymer has been analysed. The results obtained point to structural differences and different gelation mechanisms for the gels prepared in different solvents and they also suggest the possibility to control the spin-crossover transition temperature associated to the sol-gel transition.  相似文献   

5.
Following a supramolecular synthon rationale, a dicarboxylic acid derivative having a naphthalenediimide (NDI) core, namely, bisN‐carboxymethyl naphthalenediimide ( NDI‐G ), was reacted with n‐alkyl amines with varying alkyl chain lengths to generate a new series of primary ammonium dicarboxylate (PAD) salts. The majority of the salts (≈85 %) were found to gel various polar solvents. The gels were characterized by dynamic rheology and high‐resolution electron microscopy. Single‐crystal and powder X‐ray diffraction analyses were used to study the supramolecular synthon present in one of the gelator salts (i.e., S8 ). Charge‐transfer (CT)‐induced gelation with donor molecules such as anthracene methanol ( Ant ) and pyrene ( Py ) was also possible with S8 . The CT complex ( S8.Ant ) displayed anticancer activity as probed by cell migration assay on the highly aggresive breast cancer cell line MDA‐MB‐231 . The DMSO gel of S8.Ant also displayed semiconducting behavior. To the best of our knowledge, simple organic salts with an NDI core that display such mulitifunctional properties are hitherto unknown.  相似文献   

6.
Metabolic reactions that occur at alkylamino moieties may provide insight into the roles of these moieties when they are parts of drug molecules that act at different receptors. N-dealkylation of N,N-dialkylamino moieties has been associated with retaining, attenuation or loss of pharmacologic activities of metabolites compared to their parent drugs. Further, N-dealkylation has resulted in clinically used drugs, activation of prodrugs, change of receptor selectivity, and providing potential for developing fully-fledged drugs. While both secondary and tertiary alkylamino moieties (open chain aliphatic or heterocyclic) are metabolized by CYP450 isozymes oxidative N-dealkylation, only tertiary alkylamino moieties are subject to metabolic N-oxidation by Flavin-containing monooxygenase (FMO) to give N-oxide products. In this review, two aspects will be examined after surveying the metabolism of representative alkylamino-moieties-containing drugs that act at various receptors (i) the pharmacologic activities and relevant physicochemical properties (basicity and polarity) of the metabolites with respect to their parent drugs and (ii) the role of alkylamino moieties on the molecular docking of drugs in receptors. Such information is illuminative in structure-based drug design considering that fully-fledged metabolite drugs and metabolite prodrugs have been, respectively, developed from N-desalkyl and N-oxide metabolites.  相似文献   

7.
Easy access to a class of chiral gelators has been achieved by exploiting primary ammonium monocarboxylate ( PAM ), a supramolecular synthon. A combinatorial library comprising of 16 salts, derived from 5 l ‐amino acid methyl esters and 4 cinnamic acid derivatives, has been prepared and scanned for gelation. Remarkably, 14 out of 16 salts prepared (87.5 % of the salts) show moderate to good gelation abilities with various solvents, including commercial fuels, such as petrol. Anti‐solvent induced instant gelation at room temperature has been achieved in all the gelator salts, indicating that the gelation process is indeed an aborted crystallization phenomenon. Rheology, optical and scanning electron microscopy, small angle neutron scattering, and X‐ray powder diffraction have been used to characterize the gels. A structure‐property correlation has been attempted, based on these data, in addition to the single‐crystal structures of 5 gelator salts. Analysis of the FT‐IR and 1H NMR spectroscopy data reveals that some of these salts can be used as supramolecular containers for the slow release of certain pest sex pheromones. The present study clearly demonstrates the merit of crystal engineering and the supramolecular synthon approach in designing new materials with multiple properties.  相似文献   

8.
Shreedhar Bhat 《Tetrahedron》2007,63(31):7309-7320
During the past decade, the study of molecular self-assembly and network formation from small molecule gelators has become one of the most active areas of supramolecular chemistry. A serendipitous discovery of the gelation of a cationic bile salt (4) led us to investigate the aggregation properties of this new class of cationic hydrogelators. This article summarizes the recent efforts on the study of side chain structure-aggregation property relationship of cationic bile salts. Bile acid analogs with a quaternary ammonium group on the side chain were found to efficiently gel aqueous salt solutions. Some of the cationic bile salts gelled water alone and many of them gelled aqueous salt solutions even in the presence of organic co-solvents (≤20%) such as ethanol, methanol, DMSO, and DMF. These gels showed interconnected fibrous networks. Unlike natural anionic bile salt gels (reported for NaDC and NaLC), the cationic gels reported here are pH independent. Cationic gels derived from DCA showed more solid-like rheological response compared to natural NaDC gels studied earlier by Tato et al.  相似文献   

9.
基于胆固醇的新型小分子胶凝剂的合成与胶凝行为   总被引:1,自引:0,他引:1  
薛敏  苗青  房喻 《物理化学学报》2013,29(9):2005-2012
设计合成了3种以丙二胺为连接臂(L)、苯环为A单元的A(LS)2型双胆固醇(S)类小分子胶凝剂: 化合物1(邻位), 化合物2(间位)和化合物3(对位), 考察了其在30种溶剂中的胶凝行为. 结果表明, 苯环取代位置的不同对化合物的胶凝性质有决定性影响. 就胶凝溶剂的数量来讲, 对位取代的化合物3的胶凝能力明显高于邻位和间位取代的化合物12. 此外, 化合物23可以形成5个室温胶凝体系, 且化合物3/二甲苯凝胶透明、柔韧,以至于可以形成超分子薄膜. 傅里叶变换红外(FTIR)光谱和核磁共振氢谱(1H NMR)研究表明, 胶凝剂分子之间的氢键和π-π堆积作用在凝胶形成过程中发挥了一定的作用. X射线衍射(XRD)研究表明在化合物1/苯凝胶中, 胶凝剂分子聚集为六方堆积结构, 进而形成贯穿整个凝胶体系的网络结构.  相似文献   

10.
Utilizing metal-ligand binding as the driving force for self-assembly of a ditopic ligand, which consists of a 2,6-bis-(1'-methylbenzimidazolyl)-4-oxypyridine moiety attached to either end of a penta(ethylene glycol) core, in the presence of a transition metal ion (Zn(II)) and a lanthanide metal ion (La(III)), we have achieved formation of stimuli-responsive metallo-supramolecular gels. We describe herein a series of experimental studies, including optical and confocal microscopy, dynamic light scattering, wide-angle X-ray diffraction, and rheology, to explore the properties of such gels, as well as the nature of the gelation mechanism. Morphological and X-ray diffraction observations suggest gelation occurs via the flocculation of semicrystalline colloidal particles, which results in the gels exhibiting pronounced yielding and thixotropic behavior. Application of mechanical stress results in a decrease in the particle size, which is accompanied by an increase in gel strength after removal of the stress. Moreover, studies show that the presence of lanthanide(III) perchlorate increases the mechano-responsiveness of the gels, as a consequence of reduced crystallinity of the colloidal particles, presumably due to the different coordination ability of lanthanide(III) and zinc(II), which changes the nature of the self-assembly in these materials.  相似文献   

11.
The synthesis of a new triaminoguanidinium-based ligand with three tris-chelating [NNO]-binding pockets and C3 symmetry is described. The reaction of tris-(2-pyridinylene-N-oxide)triaminoguanidinium salts with zinc(II) formate leads to the formation of cyclic supramolecular coordination compounds which in solution bind fullerenes in their spherical cavities. The rapid encapsulation of C60 can be observed by NMR spectroscopy and single-crystal X-ray diffraction and is verified using computation.  相似文献   

12.
Cooperative supramolecular polymerization of π-conjugated compounds into one-dimensional nanostructures has received tremendous attentions in recent years. It is commonly achieved by incorporating amide linkages into the monomeric structures, which provide hydrogen bonds for intermolecular non-covalent complexation. Herein, the effect of amide linkages is elaborately studied, by comparing supramolecular polymerization behaviors of two structurally similar monomers with the same platinum(II) acetylide cores. As compared to the N-phenyl benzamide linkages, N-[(1S)-1-phenylethyl] benzamide linkages give rise to effective chirality transfer behaviors due to the closer distances between the chiral units and the platinum(II) acetylide core. They also provide stronger intermolecular hydrogen bonding strength, which consequently brings higher thermo-stability and enhanced gelation capability for the resulting supramolecular polymers. Supramolecular polymerization is further strengthened by varying the monomers from monotopic to ditopic structures. Hence, with the judicious modulation of structural parameters, the current study opens up new avenues for the rational design of supramolecular polymeric systems.  相似文献   

13.
A new class of polymer hydrogels, nanocomposite hydrogels (NC gels), consisting of a unique organic (polymer)/inorganic (clay) network structure, was synthesized by in situ free-radical polymerization in the presence of exfoliated clay nanoparticles in an aqueous system. The resulting NC gels overcame most of the disadvantages associated with chemically cross-linked hydrogels, such as mechanical fragility, structural heterogeneity, and slow de-swelling rate. By using thermo-sensitive poly(N-isopropylacrylamide) (PNIPA) as a constituent polymer, NC gels with remarkable mechanical, optical, and swelling properties as well as thermo-sensitivity were obtained. The various properties of NC gels, such as transparency, gel volume, cell culturing, and surface friction changed significantly in response to the temperature and surrounding conditions. All the excellent properties and new stimuli-responsive characteristics of NC gels are attributed to the unique PNIPA/clay network structure. The thermo-sensitivities and the transition temperature can largely be controlled by varying the clay content and by the addition of solutes.  相似文献   

14.
A well‐studied supramolecular synthon, namely, secondary ammonium monocarboxylate (SAM), was exploited to generate a new series of organic salts derived from variously substituted phenylacetic acid and dicyclohexylamine as potential low‐molecular‐weight gelators. As much as 25 % of the SAM salts under study were gelators. The gels were characterized by rheology, and the morphology of the gel networks was studied by high‐resolution electron microscopy. Single‐crystal and powder XRD data were employed to study structure–property (gelation) correlations. One of the gels could adsorb a hydrophobic dye (Nile Red) more efficiently than that of a hydrophilic dye (Calcein) from dimethyl sulfoxide; this might provide useful clues towards the development of stain‐removing gels.  相似文献   

15.
New ZnX2 (X = Cl, Br) complexes with sparteine N1-oxide, sparteine epi-N16-oxide, lupanine (2-oxosparteine) N-oxide and α-isosparteine N-oxide were obtained and characterized by spectroscopic and crystallographic methods. Complexation with N1-oxides involves inversion of the configuration at the N16 atom of sparteine, converting its C ring from a boat into a chair form, whereas the structure of sparteine epi-N16-oxide, typified by the trans boat/chair C/D quinolizidine moiety, remains unchanged upon complexation. Coordination of zinc salts in the above compounds is realized solely through the oxygen atom of the N-O group and is accompanied by protonation of the “not-N-oxide” nitrogen atom. At variance lupanine N-oxide forms bis-monodentate complexes with ZnX2 utilizing both the N-oxide and the lactam carbonyl oxygen atoms to bridge the neighboring ZnX2 units, while reaction of α-isosparteine N-oxide with ZnX2 leads to formation of complex salts of the general formula [H(−)α-Sp(N-oxide)][(ZnX3)(H2O)].  相似文献   

16.
The gelling behavior of some geminal diimidazolium salts was investigated in solvents differing in polarity and hydrogen bond donor ability. The used salts, namely the 3,3'-di-n-decyl-1,1'(1,4-phenylenedimethylene)diimidazolium dibromide [p-Xyl-(decim)(2)][Br](2) (1), the 3,3'-di-n-dodecyl-1,1'(1,4-phenylenedimethylene)diimidazolium dibromide [p-Xyl-(dodecim)(2)][Br](2) (2), and the 3,3'-di-n-dodecyl-1,1'(1,4-phenylenedimethylene)diimidazolium ditetrafluoroborate [p-Xyl-(dodecim)(2)][BF(4)](2) (3), differ in the alkyl chain length and in the anion properties, such as size, shape, and coordination ability. In all cases in which gelation process was observed, the obtained gels were characterized by gel melting temperature determination, resonance light scattering, and UV-vis measurements. On the whole, the investigation allowed to get information about both the thermodynamic stability and the features of the aggregates characterizing the soft materials at the equilibrium. Data collected by us point out that the used organic salts are able to behave as both hydro- and organogelators. In particular, bromide salts formed hydrogels in the presence of α-cyclodextrin allowing to hypothesize that the gelation process is favored by the formation of supramolecular assemblies. To verify this hypothesis, 1D and 2D (1)H NMR measurements were carried out. Both the alkyl chain length and the anion ability to reticulate the three-dimensional network proved to be determinant factors in affecting the gelation process as well as the features of the gel phases. Finally, with the future aim to use the obtained gels as reaction media, the effect of a guest molecule such as the UV-vis active probe Nile Red was studied.  相似文献   

17.
New gelators for urea-containing triazine derivatives were synthesised, and their gelation potential was examined using different organic solvents. These compounds were found to form the organogels with a variety of organic solvents, such as hexane and other solvents. The elongated alkyl tails of the gelators displayed an obvious decrease in the critical gelation concentrations of apolar solvents and an increase in the compatibility of gelation in polar solvents. The resulting thermo-reversible gels were characterised by using the dropping ball method and a number of other instruments. The melting temperature (Tm) of the gels in decalin and CCl4 increased with the gelator concentrations. The intermolecular hydrogen bonding of gelation in different organic solvents was observed using an FT-IR spectrometer. Temperature-dependent UV–vis and fluorescence analysis showed that the organogels displayed diverse aggregations and various fluorescence effects in different organic solvents. Blue fluorescence and J-aggregation in decalin and the quenched effect and π–π stacking in CCl4 were observed. Further, the morphological self-assembled feature in different organic solvents was studied with a scanning electron microscope, and the morphological features demonstrated that there were different aggregations in different solvents. In conductivity electrolyte experiments, the organogel electrolytes exhibited high conductivity (σ) compared with the corresponding tetrabutylammonium perchlorate (TBAP)/THF solution. The conductivity of the gel electrolytes increased with the concentration of the electrolyte salts and temperature. When the sol–gel temperature was achieved, a high ion conductivity was observed compared with the corresponding TBAP/THF solution. When the ratio of the added electrolyte salts exceeded 5%, gelation was inhibited. Furthermore, the effect of the electrolyte salts on the Tm of the gel was confirmed. The added electrolyte salts affected the gelation ability, but did not affect the sol–gel temperature.  相似文献   

18.
A new class of L ‐glutamic gelators, LG12(CH2)nCOOH, containing different lengths of methylene spacer were synthesized. It was found that the gelation ability of these compounds themselves was very weak. However, when another compound, p‐xylylenediamine (XEA), was introduced, the gelation ability was improved greatly. In particular, LG12(CH2)10COOH showed super‐gelation ability in the presence of XEA, which could immobilize almost all of the solvents except methanol. Moreover, the formed supramolecular gels even could be molded. Interestingly, some supramolecular gels of LG12(CH2)nCOOH and XEA could respond to multiple stimuli, such as heating, shaking, sonication, and acid/base. The studies of CD spectra suggested that the supramolecular chirality induced by self‐assembled chiral gelator molecules in gels could be tuned by the length of methylene spacer. In addition, the supramolecular chirality could be regulated as on/off by heating–cooling or external NH3/HCl. This would facilitate the development of dual chiroptical switches by temperature and acid/base.  相似文献   

19.
环境刺激响应性超分子凝胶材料在传感器、光开关、人工触角、药物缓释等领域表现出潜在的应用前景。本文设计合成了一种新型的核心含偶氮苯官能团聚苄醚型树枝状分子凝胶因子CA-G2。成胶性能测试表明,该凝胶因子在23种有机溶剂和混合溶剂中均可以形成稳定的淡黄色凝胶,其中在苯中表现出最优的成凝胶性能,临界成胶浓度(CGC)可达2.0mg/mL(0.23(wt)%),相当于一个树枝状分子可以固定1.5×104个溶剂分子,表明该凝胶因子具有非常优异的成凝胶性能。并且,该类凝胶材料能够同时对热、超声和触变等外界环境刺激产生响应,并伴随着宏观上凝胶-溶胶的相互转变。此外,该类凝胶对罗丹明B染料分子具有优异的吸附性能,吸附效率高达96.7%。  相似文献   

20.
Ultrasound induced formation of organogel from a glutamic dendron   总被引:1,自引:0,他引:1  
Yuangang Li 《Tetrahedron》2007,63(31):7468-7473
New l-glutamic acid based dendritic compounds: N-(2-naphthacarbonyl)-l-glutamic acid diethyl ester (NGE) and N-(2-naphthacarbonyl)-1,5-bis(l-glutamic acid diethyl ester)-l-glutamic diamide (NBGE) were designed. Although NGE could not form any gels in common solvents, NBGE could form stable gels in hexane, toluene, and water under ultrasound. Three dimensional network structures composed of fibers with various diameters were observed in the gel by SEM and TEM. FTIR spectral measurement revealed that ultrasound during cooling of the solution could destroy some of the hydrogen bond interactions and caused the gel formation. In solution, no CD signal was detected because the naphthyl chromophore is far from the chiral center. In the gel, however, CD signals assigned to the naphthyl group were observed, which indicated that the chirality of the chiral center could be transferred to the chromophore in the supramolecular organogel system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号